Оптореле 600 в. Твердотельное реле тока — где купить, характеристики, принцип работы


Часто для работы и контроля различного оборудования требуются устройства небольших размеров и высокого уровня надежности. Малогабаритные твердотельные реле постоянного и переменного тока используются в промышленности и быту, их легко можно сделать и установить своими руками.

Принцип работы

Твердотельное малогабаритное или замкнутое реле – это устройство для управления различными механизмами при помощи полупроводниковых элементов. Именно это и является основным отличием таких реле от обычных. В обычных для приведения какой-либо электрический механизм в действие используются контакты, которые периодически замыкаются и размыкаются. В твердотельных моделях эту роль выполняют тиристоры, транзисторы и симисторы.

Видео: тестирование твердотельного реле.

Твердотельные реле бывают трехфазные, однофазные, для постоянного и переменного тока (ESR и HPR). Соответственно, в зависимости от области использования меняется их принцип действия. Принцип работы твердотельного реле имеет следующий вид: когда на вход поступает электрический сигнал, в работу включается триггерная сеть и оптрон. Учитывая, что импульсы передают бесконтактно, между полупроводниками возникает гальваническая развязка, которая исчезает в момент включения диода или оптрона. Такое действие не изменяет в зависимости от применения транзисторов или симисторов.

Как сказано выше, они также бывают одно и трехфазные:

Помимо этого регулятор можно устанавливать на различные поверхности, от чего также варьируется его область использования. Некоторые можно установить на дин-рейку (din-рейку), в то время как большинство компактных твердотельных моделей можно подключить «контактами» напрямую при помощи специальной планки.


Достоинства твердотельного реле:

  1. Долговечность. Без физического контакта из-за отсутствия коммутации, устройство может осуществлять большее количество включений и выключений. Это оптоэлектронное реле может производить до десятков тысяч подключений;
  2. Этот аналог обычного реле обеспечит качественное бесконтактное подключение и контроль нагрузки;
  3. В зависимости от мощности и типа мощности, прибор может использоваться для мягкого перехода между сетью постоянного и переменного тока. Плавным называется тот переход, где при снижении частоты и направления заряженных частиц сигнал, поступающий на вход, максимально сохраняется;
  4. Широкая область использования. Его можно применять в различных отраслях промышленности, бытовых условиях и т. д.;
  5. Они выдерживают перегрузки даже на 200% выше номинально указанных.Даже после многочисленных перегрузок им не понадобится замена;
  6. Высокая защита от перепадов тока и напряжения. Напряжение даже в бытовой сети редко остается постоянным, оно изменяется в зависимости от количества подключенных устройств, типа проводов и прочих факторов. Такие скачки могут вызвать короткое замыкание и повреждение аппаратуры. Импульсное твердотельное реле обладает отлично защитой от таких неприятностей, поэтому часто используется для обеспечения долговечной эксплуатации нагревателей, холодильных камер, компьютерной техники.

Но прибор имеет и определенные недостатки. Во-первых, это полупроводниковое реле довольно дорого стоит, кроме того, купить его можно только в специализированных магазинах. Во-вторых, во время первичной коммутации у асинхронного двигателя (соответственно, при использовании трехфазной модели) возникают сильные скачки тока. И последний минус в том, что применение реле возможно только в зонах с нормальным уровнем пыли и влажности.

Подключение

Но, перед тем как подключить твердотельное реле на транзисторах или симисторах, нужно знать несколько правил его установки:

  1. Силовое оптореле можно подключить только винтовым способом, сварка и пайка повредят хрупкие контакты;
  2. При работе устройство сильно нагревается, поэтому возле него не должно быть легковоспламеняющихся деталей;
  3. Некоторые модели реле (особенно в авто) очень легко и быстро нагреваются свыше 60 градусов, что может повредить их контакты. Чтобы избежать этого их следует устанавливать на радиатор охлаждения;
  4. При первом запуске очень важно следить за напряжением. Контролем нужно обеспечить его «ровное» состояние хотя бы на первое время, иначе устройство сгорит от короткого замыкания.

Схема подключения твердотельного реле практически такая же, как и включения в сеть обычного контроллера. На плату полевых транзисторов (симисторов, и т. д.) подается напряжение от локальной линии. Самое главное – это подать электрический ток на ноль-контакт (в цепи управления). Остальное наглядно демонстрирует схема:


Характеристики

Естественно, у каждой фирмы, предлагающей такие приборы, свои параметры и модели. Рассмотрим основные характеристики наиболее популярных из отечественных твердотельных реле (КИПприбор – KIPpribor, Cosmo, Протон):

  1. ТМ-0 оснащены встроенный схемой «ноль», через которую осуществляется переход фаз;
  2. ТС могут включаться в любой момент фазы;
  3. Самые известные – это контроллеры ТМВ, ТСБ, ТСВ (их еще называют ТМА), ТСА, ТМБ. Они выходной RC-цепью и используются для управления в системах потенциального управления;
  4. ТС/ТМ относятся к силовым. Ток доходит до 25мА;
  5. ТСА и ТМА имеют основное назначение – специальные чувствительные к перепадам напряжения приборы;
  6. ТСБ/ТМБ – это низковольтные модели (до 30 В);
  7. ТСВ/ТМВ – высоковольтные (от 110 до 280В).

Иностранными аналогами являются Carlo Gavazzi, (SSR) Gefran (для инфракрасных активных нагрузок), Finder и CPC (модель SCC).

Основные характеристики TSR-25DA:

90-280VAC, 25A/240VAC от Crydom:

Твердотельное реле SSR–F 10 DA – H SSR:

Обзор цен

Цена на твердотельные реле варьируется в зависимости от их типа и марки:

Город Стоимость SSR10АА, у. е.
Екатеринбург 4
Москва 5
Новосибирск 4
СПб 5
Краснодар 4
Воронеж 4
Нижний Новгород 4

Оптопарой (иначе – оптроном) называют электронные прибора предназначенные для преобразования электрических сигналов в световые, их передачи через оптические каналы и повторного преобразования сигнала вновь в электрический. Конструкция оптрона подразумевает наличие специального светового излучателя (в современных устройствах для этого применяются световые диоды, прежние модели оснащались малогабаритными лампами накаливания) и устройства, отвечающего за преобразование полученного оптического сигнала (фотоприёмника). Обе эти составляющие объединяются при помощи оптического канала и общего корпуса.

Классификация разновидностей оптопар

Существует несколько характеристик, в соответствии с которыми можно разделить модели оптопар на несколько групп.

В зависимости от степени интеграции:

  • элементарный оптрон – включает в себя 2 и более элемента объединённых общим корпусом;
  • оптронная интегральная схема – конструкция состоит из одной и более оптопар и, помимо этого, ещё может быть оснащена дополняющими элементами (например, усилителем).

В зависимости от разновидности оптического канала:

  • Оптический канал открытого типа;
  • Оптический канал закрытого типа.

В зависимости от типа фотоприёмника:

  • Фоторезисторные (или просто резисторные оптопары);
  • Фотодиодные оптопары;
  • Фототранзисторные (используется обычный или составной биполярный фототранзистор) оптопары;
  • , либо фотосимисторные оптопары;
  • Оптопары функционирующие с помощью фотогальванического генератора (солнечная батарейка).

Конструкция устройств последнего вида зачастую дополняются полевыми транзисторами, за управление затвором которого отвечает тот же генератор.

Фотосимисторные оптроны или те, которые оснащены полевыми транзисторами, могут называться «оптореле», либо « ».

Рис.1: Устройство оптрона

Оптоэлектронные устройства работают по-разному в зависимости от того, к какому из двух видов направлений они относятся:

  • Электронно-оптическое.

Работа прибора базируется на принципе, в соответствии с которым происходит преобразование световой энергии в электрическую. Причём, переход осуществляется посредством твёрдого тела и происходящих в нём процессов внутреннего фотоэлектрического эффекта (выражающегося в испускании веществом электронов под воздействием фотонов) и эффекта свечения под действием электрического поля.

  • Оптическое.

Прибор функционирует благодаря тонкому взаимодействию твёрдого тела и электромагнитного излучения, а также используя лазерные, голографические и фотохимические устройства.

Фотонные электронно-вычислительные машины компонуются с использованием одной из двух категорий оптических элементов:

  • Оптронов;
  • Кванто-оптических элементов.

Они являются моделями устройств соответственно электронно-оптического и оптического направлений.

Будет ли оптрон передавать сигнал линейно, определяется теми характеристиками, которыми обладает вмонтированный в конструкцию фотоприёмник. Наибольшую линейность передачи можно ожидать от резисторных оптронов. Как следствие, процесс эксплуатации подобных устройств отличается наибольшим удобством. Ступенью ниже стоят модели с фотодиодами и одиночными биполярными транзисторами.

Для обеспечения работы импульсных приборов применяют оптроны на биполярных, либо полевых транзисторах, поскольку там нет необходимости в линейной передаче сигнала.

Наконец, фототиристорные оптроны монтируют, чтобы обеспечить гальваническую изоляцию и безопасность эксплуатации устройства.

Применение

Существует множество сфер, в которых необходимо использование оптронов. Такая широта применения обусловлена тем, что они являются элементами, обладающими множеством различных свойств и на каждое их качество приходится отдельная сфера применения.

  • Фиксация механического воздействия (применяются устройства, оснащённые оптическим каналом открытого типа, который можно перекрыть (оказать механическое воздействие), а значит, само устройство можно использовать как сенсор):
    • Детекторы наличия (выявление наличия/отсутствия бумажных листов в принтере);
    • Детекторы конечной (начальной) точки;
    • Счётчики;
    • Дискретные спидометры.
  • Гальваническая изоляция (использование оптронов позволяет передавать сигнал не связанный с напряжением, также с их помощью обеспечивается бесконтактное управление и защита), которая может обеспечиваться:
    • Оптопарой (в большинстве случаев применяется как информационный передатчик);
    • Оптореле (более прочего подходит для управления сигнальными и силовыми цепями).

Оптопары

Использование транзисторных, либо интегральных оптопар особенно актуально, если требуется обеспечить гальваническую изоляцию в сигнальной цепи или цепи с незначительным управляющим током. Роль элемента управления могут выполнять трёхэлектродные полупроводниковые приборы, схемы, управляющие дискретными сигналами, а также цепи с особой специализацией.

Рис2: Оптопары 5000 Vrms 50mA.

Параметры и особенности работы оптопар

Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами:

  • SSOP;
  • Miniflat-lead.

В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:

  • и оптический регистратор;
  • Внутренняя и внешняя сторона корпуса.

В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше.

Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.

Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц

Транзисторная оптопара и производимые ею шумы

Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:

Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.

Оптореле

Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.

Рис.3: Оптореле КР293 КП2В

Классификация видов оптореле

Для оптореле определено три типа топологий:

  1. Нормально разомкнутые .Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  2. Нормально замкнутые .Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  3. Переключающая .Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.

Оптореле подобно оптопаре имеет характеристику по электрической прочности.

Разновидности оптореле

  • Модели стандартного типа;
  • Модели, имеющие малое сопротивление;
  • Модели, имеющие малое СxR;
  • Модели, имеющие малое напряжение смещения;
  • Модели, имеющие высокое напряжение изоляции.

Сферы применения оптореле

  • Модем;
  • Измерительное устройство;
  • Сопряжение с исполнительным устройством;
  • Автоматические телефонные станции;
  • Электрический, тепловой, газовый счётчик;
  • Коммутатор сигналов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Оптореле или, по-другому, оптоэлектронные реле строятся на основе оптопар с полевыми транзисторами. Они более технологичные (а значит и более дешёвые) по сравнению с микросхемами «цифровых изоляторов», которые содержат внутри микроминиатюрные импульсные трансформаторы.

Типовые параметры твёрдотельных оптореле (англ. «Solid-state MOS relays»): ток управления 10…60 мА, время переключения 2…2000 МК с, ток коммутации

1.. .20 А, максимально допустимое напряжение в нагрузке 200…1000Вдля мощных силовых и на порядок меньше для маломощных сигнальных оптореле, ресурс работы 10 лет, наработка на отказ не менее 25000 часов.

Различают оптореле с коммутацией одн двухполярных сигналов. В переводе на понятный язык - для коммутации постоянного и переменного тока. На Рис. 2.117, а…е для примера показаны варианты внутренней «начинки» оптореле серии KP293 (по-старому 5П14). Параллельно выходным контактам оптореле стоят защитные диоды по аналогии с имеющимся в полевых транзисторах MOSFET.

Рис. 2.117. Внутреннее строение оптореле серии KP293:

а) реле постоянного тока с замыкающим контактом;

б) реле постоянного тока с размыкающим контактом;

в) реле переменного тока с замыкающим контактом;

г) реле переменного тока с размыкающим контактом;

д) реле постоянного тока с замыкающим и размыкающим контактами;

е) реле переменного тока с замыкающим и размыкающим контактами.

В некоторых оптореле последовательно со светодиодом встраивают интегральный токоограничивающий резистор. Это позволяет сэкономить место на плате и защитить светодиод в случае ошибочной подачи на вход высокого напряжения.

Светодиоды, входящие в состав оптореле, работают в инфракрасном диапазедлин волнстиповым падением напряжения 1.0…1.2 В. Не следует «жадничать» и уменьшать ток через светодиод ниже паспортного значения, поскольку могут ухудшиться выходные параметры и надёжность коммутации.

Оптореле, в отличие от оптосимистора, гарантированно переходит в противоположное состояние при снятии освещённости полупроводниковой зоны. Для оптореле без разницы, имеется или отсутствует напряжение в нагрузке. Кроме того, ввиду линейности ВАХ, появляется возможность без искажений коммутировать сигналы очень малой амплитуды, в отличие от оптосимисторов с их резкой пороговой характеристикой вблизи нуля.

При коммутации переменных сигналов большой амплитуды начинает сказываться нелинейная зависимость сопротивления канала полевых транзисторов оптореле от напряжения, т.е. возможны искажения формы и спектра сигнала.

Для повышения устойчивости работы оптореле в сети 220 В при атаке импульсных помех рекомендуется параллельно его замыкающим контактам ставить последовательную RC-цепь, состоящую из проволочного резистора сопротивлением

10.. .50 Ом и конденсатора ёмкостью 0.01…0.15 МК Ф с напряжением 600 В.

На Рис. 2.118, а…в приведены схемы подключения оптореле к MK.

а) VU1 - это оптореле фирмы Crydom. Ток управления 3…4 мА, изоляция выдерживает без пробоя напряжение 4 кВ, проходная ёмкость 8 пФ;

б) индикация включения светоизлучающей части оптореле VU1 (фирма Fairchild) производится светодиодом HL1. Мощность в нагрузке R H не более 50 Вт;

в) НИЗКИМ уровнем на выходе МК размыкаются контакты оптореле VU1, при этом прибор, подключаемый к вторичной обмотке трансформатора 77, переходит в дежурный режим с пониженным питанием, поскольку последовательно включается гасящее сопротивление R2.

Поскольку оптоэлектронные реле появились на рынке существенно позже электромеханических, то какое-то время они рассматривались в перспективе как неизбежная замена электромеханических на все случаи жизни. Почти наверняка это не так, и те, и другие реле имеют свои ниши на рынке электронных компонентов. Но оптореле оказались свободными от ряда существенных недостатков, которые объективно сопутствуют реле электромеханическим. Следовательно, в тех приложениях, где эти недостатки были критичными, оптоэлектронные реле вытесняли электромеханические.

Коротко рассмотрим эти недостатки:

1. Срок эксплуатации. В электромеханических реле замыкание и размыкание коммутируемой цепи происходит за счет изгиба миниатюрной металлической пластины под действием электромагнитного поля, возникающего при протекании тока через обмотку возбуждения (цепь управления). С течением времени механические свойства пластины изменяются. Поэтому срок службы электромеханических реле ограничен не столько временем, сколько режимом работы, а именно, суммарным количеством переключений. В зависимости от типа реле и параметров коммутируемых сигналов количество переключений оценивалось как 105…107. Коммутируемая цепь оптоэлектронных реле механических частей не имеет, следовательно, и параметр «количество переключений» не имеет практического смысла.

2. В процессе эксплуатации электромеханических реле электрохимические характеристики контакта меняются (контакт «пригорает»), и сопротивление замкнутого контакта в течение срока службы может существенно изменяться. У оптореле этот параметр практически не меняется (при одинаковых условиях эксплуатации).

3. Для электромагнитных реле характерен дребезг контактов, то есть неоднократное замыкание-размыкание контакта при переключении. Это, во-первых, увеличивает уровень электромагнитных помех в аппаратуре, а во-вторых, может потребовать дополнительных антидребезговых мер (например, в счетных схемах).

4. В электромагнитных реле возможно нештатное замыкание контактов под действием ударных или вибрационных воздействий. Отсутствие механических подвижных контактов в оптореле делает их более устойчивыми к таким воздействиям.

5. Поскольку переключение в электромагнитных реле происходит под воздействием электромагнитного поля, возможны нештатные срабатывания от внешних электромагнитных полей. Это приводит к необходимости дополнительных конструктивных мер, например, разнесению соседних реле на безопасное расстояние, экранирование и т.д.

6. Для электромагнитных реле неизбежен акустический шум от срабатывания контактов в процессе работы.

Кроме того:

7. В оптоэлектронных реле значение тока в цепи управления, необходимое для замыкания коммутируемой цепи, значительно меньше, чем в электромагнитных реле. Следовательно, применение оптореле в цифровых схемах заметно упрощается.

8. Для оптореле, в общем случае, характерно значительно меньшее время срабатывания (замыкания и размыкания).

9. При прочих равных условиях, для оптоэлектронных реле характерны меньшие вес, габариты и площадь, занимаемая на печатной плате.

Технология оптоэлектронных реле
International Rectifier

Оптоэлектронное реле International Rectifier, структура которого представлена на рисунке 1, включает в себя три основных функциональных узла: управляющую цепь, матрицу фотогальванических ячеек и выходной ключ.

Рис. 1.

Управляющая цепь содержит светодиод, преобразующий протекающий через него ток в инфракрасное излучение. Инфракрасный свет, пройдя некоторое расстояние в корпусе реле, попадает на матрицу фотогальванических ячеек, каждая из которых преобразует попадающий на нее свет в напряжение, которое, в свою очередь, управляет элементом, замыкающим выходной ключ.

Если ток через цепь управления не протекает, то светодиод не излучает свет, фотогальваническая матрица не формирует напряжение и выходной ключ размыкает цепь коммутации.

В оптореле переменного тока в качестве выходного ключа используется симистор. Характерной особенностью приборов данного типа является то, что размыкание выходного ключа происходит в тот момент, когда напряжение в коммутируемой цепи проходит через ноль. Поэтому применение реле на симисторах в цепях постоянного тока весьма затруднительно.

В оптореле постоянного тока в качестве выходного ключа используется одиночный биполярный или МОП-транзистор.

В универсальных оптореле (коммутирующих как постоянный, так и переменный ток) в качестве ключа используется пара МОП- или IGBT-транзисторов, соединенных истоками.

В линейке International Rectifier отсутствуют оптоэлектронные реле на симисторах. В отличие от симисторных, ключи на МОП-транзисторах характеризуются практически линейной зависимостью падения напряжения на открытом ключе от тока в нагрузке (IL) или, другими словами, постоянством сопротивления замкнутого ключа. В качестве выходного ключа используются или полевые МОП-транзисторы, выполненные по технологии HEXFET (запатентованной International Rectifier), или биполярные транзисторы с изолированным затвором — IGBT. Сдвоенные МОП-транзисторы, используемые в универсальных оптореле, получили название BOSFET.

Варианты подключения оптоэлектронных реле

Отметим, что International Rectifier выпускает только однополюсные нормально разомкнутые оптореле (иначе Form A), поэтому все варианты подключений относятся именно к этому типу реле.

В общем случае оптоэлектронные универсальные реле имеют 5 задействованных контактов: 1 — плюс цепи управления, 2 — минус цепи управления, 4 — сток транзистора 1, 5 — общий исток транзисторов 1 и 2, 6 — сток транзистора 2.

Применяются три типа подключения, представленные на рисунке 2.

Рис. 2.

Подключение A используется для коммутации нагрузки переменного или постоянного тока. В этом случае ток течет через канал «сток-исток» одного транзистора и объемный диод стока второго. При изменении направления тока в нагрузке, соответственно меняется и направление тока в паре транзисторов. Если общий исток не выведен на внешний вывод реле, то это подключение остается единственно возможным (серия PVA).

Подключение B используется для коммутации нагрузки только постоянного тока. В этом случае ток течет через канал «сток-исток» одного транзистора, а второй транзистор не задействован.

Подключение C также используется для коммутации нагрузки только постоянного тока. В этом случае стоки пары транзисторов объединяются внешней перемычкой. Тогда ток протекает через каналы «сток-исток» двух транзисторов одновременно, а сопротивление замкнутого контакта снижается примерно вдвое.

Линейка оптоэлектронных реле International Rectifier

Если рассматривать линейку оптоэлектронных реле International Rectifier на МОП-транзисторах, то можно определить три основные группы:

1. Быстродействующие — время переключения не превышает 200 мкс. Сюда входят серии PVA, PVD и PVR.

2. Низковольтные мощные — величина тока в коммутируемой цепи от 1 А, при сопротивлении замкнутого контакта менее 0,5 Ом. Это серии PVG и PVN.

3. Общего назначения — время включения от 2 мс и более, коммутируемая мощность — до 150 Вт. Главным образом, это серия PVT.

Оптоэлектронные реле серии PVA

Серия PVA — однополюсные, нормально разомкнутые оптореле. В качестве выходного ключа используются BOSFET-транзисторы. Целевое назначение — коммутация аналоговых сигналов постоянного и переменного тока. Все модификации выпускаются в корпусах с двухрядным расположением выводов: с суффиксом NS — для поверхностного монтажа (SMT-8), с суффиксом N — для выводного монтажа (DIP-8). Вариант подключения — только А, поскольку общий исток транзисторов на внешний вывод корпуса не выведен. Технические характеристики представлены в таблице 1.

Таблица 1. Технические характеристики оптореле серии PVA

Модель «Рабочее напряжение, В» «Ток нагрузки,
мА»
Сопротив-ление Ron, Ом Сопротив-ление Roff, Мом «Ток управ-ления,
мА»
«Напряжение изоляции, В» «Задержка рас-пространения,
мкс»
(+) (-) Ton Toff
PVA1352 100 100 375 5 100 5 4000 150 125
PVA1354 100 100 375 5 10 000 5 4000 150 125
PVA2352 200 200 150 24 100 5 4000 100 110
PVA3054 300 300 50 160 10 000 5 4000 60 100
PVA3055 300 300 50 160 100 000 5 4000 60 100
PVA3324 300 300 150 24 10 000 2 4000 100 110
PVA3354 300 300 150 24 10 000 5 4000 100 110

Несомненное достоинство серии — высокое быстродействие. У PVA30xx оно наивысшее, но эти реле имеют весьма высокое сопротивление замкнутого контакта и, как следствие, большое падение напряжения (до 8 В) на замкнутом контакте.

Оптоэлектронные реле серии PVD

Серия PVD является аналогом реле PVA1352 и PVA1354 с заранее реализованным вариантом подключения C (то есть, не одиночный транзистор, а именно BOSFET в подключении С). Технические характеристики серии PVD представлены в таблице 2.

Таблица 2. Технические характеристики оптореле серии PVD

Модель Рабочее
напряжение,
В
Ток нагрузки, мА Сопротив-ление Ron, Ом Сопротив-ление Roff, Мом Ток управ-ления,
мА
Напряжение изоляции,
В
Задержка
распространения, мкс
Ton Toff
PVD1352 100 550 1,5 100 5 4000 150 125
PVD1354 100 550 1,5 10 000 5 4000 150 125

Оптоэлектронные реле серии PVR

По техническим характеристикам и области применения данные устройства весьма близки к оптоэлектронным реле PVAx3xx и являются их дальнейшим развитием. Основные отличия:

  • выпускаются только в корпусах для выводного монтажа (DIP-16);
  • в одном корпусе собрано два независимых, однополюсных реле;
  • общий исток BOSFET-транзисторов выведен на внешний вывод, следовательно, возможна реализация не только подключения по схеме А, но и по схемам B и C.

Технические характеристики серии PVR представлены в таблице 3.

Таблица 3. Технические характеристики оптореле серии PVR

Модель Рабочее напряжение, В Ток нагрузки, мА Сопротивление Ron, Ом Сопротив-ление Roff, Мом Ток
управления, мА
Напряжение изоляции,
В
Задержка рас-пространения,
мкс
(+) (-) (A) (B) (C) (A) (B) (C) Ton Toff
PVR1300 100 100 360 420 660 5 3 1,5 100 2 1500 150 125
PVR1301 100 100 360 420 660 5 3 1,5 10000 2 1500 150 125
PVR2300 200 200 165 180 310 24 12 6 100 2 1500 150 125
PVR3300 300 300 165 180 310 24 12 6 100 2 1500 150 125
PVR3301 300 300 165 180 310 24 12 6 10000 2 1500 150 125

Обратим внимание на тот факт, что сдвоенные оптоэлектронные реле, аналогичные PVR, иногда ошибочно обозначают как "2 Form A". Различные управляющие цепи однозначно относят их к "Double 1 Form A". Однако если управляющие цепи включить параллельно, то получим аналог типа "2 Form A" электромагнитных реле.

Оптоэлектронные реле серии PVG

Серия PVG — однополюсные, нормально разомкнутые оптореле, с возможностью включения по схемам A, B и C. Реле предназначены для коммутации аналоговых сигналов с напряжением до 60 В. Все модификации выпускаются в корпусах с двухрядным расположением выводов: с суффиксом S — для поверхностного монтажа (SMT-6), без суффикса — для выводного монтажа (DIP-6).

Технические характеристики серии PVG представлены в таблице 4.

Таблица 4. Технические характеристики оптореле серии PVG

Модель Рабочее
напряжение,
В
Ток нагрузки, мА Сопротивление Ron, Ом Сопротив-ление Roff, Мом Ток
управления,
мА
Напряжение изоляции, В Задержка рас-пространения,
мкс
(+) (-) (A) (B) (C) (A) (B) (C) Ton Toff
PVG612 60 60 1000 1500 2000 0,5 0,25 0,15 100 5 4000 2000 500
PVG612A 60 60 2000 2500 4000 0,1 0,05 0,035 60 5 4000 3500 500
PVG613 60 60 1000 1500 2000 0,5 0,25 0,15 4800 5 4000 2000 500

Отличительная особенность оптореле этой серии — высокие токи нагрузки в сочетании с достаточно малым сопротивлением замкнутого контакта, что обеспечивает весьма приемлемые значения падения напряжения на контакте. Основные области применения: источники и системы коммутации вторичного электропитания, компьютеры, периферийные устройства и аудиотехника, выходные реле программируемых логических контроллеров и подобные приложения промышленной автоматики. Незначительное падение напряжения на контакте позволяет использовать реле этой серии также в измерительных системах.

Отметим появление суффикса "A" — за счет увеличения времени срабатывания снижено сопротивление замкнутого контакта, что позволило увеличить ток при примерно равном значении рассеиваемой на контакте мощности.

Оптоэлектронные реле серии PVN

Серия PVN является модификацией серии PVG. Снижение рабочего напряжения до 20 В позволило увеличить ток нагрузки и снизить сопротивление замкнутого контакта. Эти оптореле — лучшие в линейке International Rectifier по данным параметрам и, соответственно, обеспечивают минимальные значения падения напряжения на контакте. Корпусное исполнение серии PVN аналогично серии PVG.

Технические характеристики серии PVN представлены в таблице 5.

Таблица 5. Технические характеристики оптореле серии PVN

Модель Рабочее
напряжение, В
Ток нагрузки,
мА
Сопротивление
Ron, Ом
Сопротив-ление Roff, Мом Ток управ-ления,
мА
Напряжение изоляции,
В
Задержка
распространения,
мкс
(+) (-) (A) (B) (C) (A) (B) (C) Ton Toff
PVN012 20 20 2000 3000 4500 0,1 0,065 0,04 16 3 4000 5000 500
PVN012A 20 20 4000 4500 6000 0,05 0,025 0,015 н.д. 5 4000 3000 500
PVN013 20 20 2000 3000 4500 0,1 0,065 0,04 н.д. 3 4000 5000 500

Возможные области применения аналогичны серии PVG, но указанные отличия более значимы именно для систем коммутации электропитания и измерительных систем.

Оптоэлектронные реле серии PVT

Серия PVT позиционируется производителем как оптореле для телекоммуникационных приложений (отсюда и буква "T"). Но логичнее сформулировать все-таки как «оптореле общего назначения».

Технические характеристики серии PVT представлены в таблице 6.

Таблица 6. Технические характеристики оптореле серии PVT

Модель Рабочее напряжение, В Ток нагрузки,
мА
Сопротивление Ron,
Ом
Сопротив-ление Roff, Мом Ток управ-ления,
мА
Напряжение изоляции, В Задержка рас-пространения,
мкс
(+) (-) (A) (B) (C) (A) (B) (C) Ton Toff
PVT212 150 150 550 600 825 0,75 0,4 0,25 150 5 4000 3000 500
PVT312 250 250 190 210 320 10 5,5 3 250 2 4000 3000 500
PVT312L 250 250 170 190 300 15 8 4,25 250 2 4000 3000 500
PVT322 250 250 170 - - 10 - - 250 2 4000 3000 500
PVT322A 250 250 170 - - 8 - - 250 2 4000 3000 500
PVT412 400 400 140 150 210 27 14 7 400 3 4000 2000 500
PVT412A 400 400 240 260 360 6 3 2 400 3 4000 3000 500
PVT412L 400 400 120 130 200 35 18 9 400 3 4000 2000 500
PVT422 400 400 120 - - 35 - - 320 2 4000 2000 2000

Какой вывод мощно сделать из приведенных параметров? Что-то среднее — «золотая середина». Трудно спорить, что основные параметры оптореле: рабочее напряжение, ток нагрузки, время переключения, сопротивление замкнутого контакта, — составляют нечто постоянное. И если решаемая задача определяет повышенные требования к одному из параметров, то это достигается за счет одного или нескольких оставшихся.

Производитель предлагает области применения: модемы, факсы, телефонные аппараты (поднятие трубки, импульсный набор), коммутаторы и мультиплексоры телефонных линий, контроль сетевого напряжения и, как итог, "general switching" — «коммутация в целом».

Возвращаясь к серии PVT — изделия PVT322 и 422 (по всем суффиксам) содержат два независимых реле в одном корпусе. Однако размещение их в 8-выводном корпусе не позволяет вывести общий исток, следовательно, возможно включение только по схеме А. Отметим, что в серии PVR использовался 16-выводной корпус, и подобное ограничение отсутствовало.

Новый суффикс "L" означает введение дополнительных схем ограничения тока: при превышении тока выше порогового уровня увеличивается сопротивление контакта и ток снижается, что не препятствует выходу реле из строя.

Оптоэлектронное реле PVX6012

Оптоэлектронное реле PVX6012 — единственное в линейке изделие, в котором в качестве выходного ключа используются IGBT-транзисторы. Это позволяет коммутировать нагрузку мощностью до 400 Вт на постоянном токе и до 280 Вт — на переменном. Технические параметры приведены в таблице 7.

Таблица 7. Технические характеристики оптореле PVX6012

Модель Рабочее
напряжение, В
Ток нагрузки,
мА
Сопротив-ление Roff, Мом Ток
управления,
мА
Напряжение изоляции,
В
Задержка
распространения,
мкс
(AC) (DC) (AC) (DC) Ton Toff
PVX6012 400 400 1000 1000 40 5 3750 7000 1000

При применении PVX6012 необходимо иметь в виду: реле на IGBT-транзисторах коммутируют, по сравнению с HEXFET, более низкочастотные сигналы (до 20 кГц) и более критичны к параметрам нагрузки.

Кроме того, при необходимости коммутации мощной высоковольтной нагрузки могут быть использованы оптоэлектронные изоляторы серии PVI. В отличие от рассмотренных оптореле, они включают в себя цепь управления и матрицу фотогальванических ячеек (рис. 1), но не содержат встроенного выходного ключа, взамен которого подключается внешний с требуемыми параметрами.

Сравнение International Rectifier
с другими производителями

Ведущими мировыми производителями оптоэлектронных реле считаются Avago, Clare, Cosmo, Fairchild, NEC, Panasonic, Sharp, Toshiba. Детальное сравнение, а, тем более подбор аналогов, очевидно, выходит за возможности данного обзора.

Имеет смысл сравнивать по двум группам (быстродействующие, низковольтные мощные реле). Очевидно, что сравнение технических параметров реле общего назначения даст примерно одинаковые результаты. Сопоставляются компоненты близкие по величине рабочего напряжения (300 В для быстродействующие и 60 В для низковольтных мощных). После чего сравниваются три основных параметра: ток нагрузки, сопротивление замкнутого контакта и время срабатывания. Результаты сравнения приведены в таблицах 8 и 9.

Таблица 8. Сравнение быстродействующих оптореле

Модель Произво-дитель Рабочее
напряжение,
В
Ток
нагрузки,
мА
Сопротив-ление Ron, Ом Ток
управления,
мА
Напряжение изоляции,
В
Задержка
распространения,
мкс
Ton Toff
PVA3055 IR 300 50 160 5 4000 60 100
PLA160 Clare 300 50 100 10 3750 50 50
PVA3324 IR 300 150 24 2 4000 100 110
ASSR-4110-003E Avago 400 120 25 - 3750 500 200
PLA110L Clare 400 150 25 5 3750 1000 250
KAQY210/A Cosmo 350 130 20 1,5 3750 1000 1500
HSR412 Fairchild 400 140 27 3 4000 - -
PS7341C-1A NEC 400 120 27 - 3750 550 70
AQY210EH Panasonic 350 130 25 - 5000 - -
TLP227G Toshiba 350 120 35 3 3750 - -

Таблица 9. Сравнение низковольтных мощных оптореле

Toshiba

Модель Произво-дитель «Рабочее
напряжение,
В»
«Ток
нагрузки,
мА»
Сопротив-ление Ron, Ом «Ток
управления,
мА»
«Напряжение изоляции,
В»
«Задержка рас-пространения,
мкс»
Ton Toff
PVG612A IR 60 2000 0,1 5 4000 3500 500
LCA715 Clare 60 2000 0,15 10 3750 2500 250
PS710A-1A NEC 60 1800 0,1 - 1500 1000 50
AQY272 Panasonic 60 2000 0,18 - 2500 - -
TLP3542 Toshiba 60 2500 0,1 10 2500 - -
PVG612 IR 60 1000 0,5 5 4000 2000 500
ASSR-1510-003E Avago 60 1000 0,5 - 3750 1000 200
LCA710 Clare 60 1000 0,5 10 3750 2500 250
KAQV212/A Cosmo 60 400 0,83 1,5 3750 1500 1500
AQY212GH Panasonic 60 1100 0,34 - 5000 - -
TLP3122 60 1000 0,7 5 1500 - -

Для оптореле PVA3055 сопоставимое изделие найдено только у Clare. Изделия, сравнимые с PVA3324, есть и у других производителей, однако по быстродействию (особенно если брать сумму TON+TOFF) они существенно уступают предложению International Rectifier.

Поскольку производители в основном не указывают, для какого варианта подключений даны параметры, принимаем вариант А, как наиболее жесткий. В качестве базы для сравнения возьмем PVG612A и PVG612 с током нагрузки, соответственно, 1 и 2 А. При сравнимом значении коммутируемой мощности для этой группы оптореле сопротивление замкнутого контакта — более важный параметр, нежели задержка срабатывания, поскольку напрямую определяет потери мощности и, соответственно, нагрев реле. В обоих случаях можно говорить о том, что предложения International Rectifier — одни из лучших. Отметим, что у Avago, Cosmo и NEC в одном, а у Fairchild в обоих случаях не нашлось сопоставимых изделий.

Выводы

Компания International Rectifier у отечественного разработчика в первую очередь ассоциируется с мощными HEXFET- и IGBT-транзисторами, микросхемами для управления силовыми приводами, стабилизаторами напряжения, решениями по управлению освещением. С оптоэлектронными реле — гораздо реже.

Однако мы убедились, что в таких товарных группах, как быстродействующие и низковольтные мощные оптореле, International Rectifier находится в числе лидеров.

Получение технической информации, заказ образцов, поставка — e-mail:

Оптореле 220 В/10 A Nf249

В последние годы на смену обычных электромагнитных реле приходят оптоэлектрон-ные твердотельные реле (оп-тореле). Оптореле представляют собой сильноточные ключи с гальванической развязкой между входами управления и нагрузкой и предназначены для коммутации нагрузки в цепях переменного и постоянного тока.

Преимущества оптореле очевидны. Это малый ток управления, отсутствие электромагнитных помех при коммутации нагрузки, высокое напряжение изоляции, широкий диапазон рабочих температур. Кроме того, малые габариты и большая надежность (наработка на отказ) делают их очень удобными в различных применениях.

Предлагаемый набор NF249 МАСТЕР КИТ позволит радиолюбителю собрать современное, простое и надежное оптическое коммутационное устройство: оптореле.

Набор также будет интересен и полезен при знакомстве с основами электроники и полу-

чении опыта сборки и настройки устройств.

ТЕХНИЧЕСКИЕ

ХАРАКТЕРИСТИКИ

ОПТОРЕЛЕ

Общий вид устройства представлен на рис. 1, схема электрическая принципиальная —на рис. 2.

ОПИСАНИЕ РАБОТЫ

ОПТОРЕЛЕ

Принципиальная электрическая схема приведена на

рис 2.

Принцип работы твердотельного реле состоит в следующем: входной сигнал (управляющий ток) через диод D1 подается на светодиод. Излучение, пройдя некоторое расстояние в корпусе реле (МОС3041), попадает на фотодиодную матрицу (фотоэлектрический генератор). Падающее излучение создает в фотодиодной матрице фото-

ЭДС. Наведенное напряжение подается на схему управления, которая в свою очередь формирует необходимый сигнал для управления выходным ключевым каскадом, обеспечивает защиту затвора выходного МОП-ключа, обеспечивает быстрое выключение ключа. Силовой ключ реализован на элементах С1, С2, R2, R3, и симисторе TR1. Резистор R1 ограничивает ток через свето-диод оптореле.

КОНСТРУКЦИЯ

Конструктивно устройство выполнено на печатной плате из фольгированного стеклотекстолита с размерами 52x38 мм. Конструкция предусматривает установку платы в корпус, для этого по краям платы имеются монтажные отверстия под винты 03 мм.

ОБЩИЕ ТРЕБОВАНИЯ К МОНТАЖУ И СБОРКЕ

НАБОРА

Все входящие в набор компоненты монтируются на печатной плате методом пайки.

Не используйте паяльник мощностью более 25 Вт.

Для предотвращения отслаивания токопроводящих дорожек и перегрева элементов, время пайки одного контакта не должно превышать 2-3 с.

ПОРЯДОК СБОРКИ

Проверьте комплектность набора согласно перечню элементов (табл. 1).

Таблица 1. Перечень элементов

Позиция

Наименование

Примечание

Кол-во

С1, С2

0,01 мкФ (500) B

Керамический конденсатор

500 Ом

Зеленый, черный, коричневый

R2, R3

470 Ом

Желтый, фиолетовый, коричневый

МОС3041

Оптореле

1N4001

Диод

ВТА12-600В

Симистор

Контакты штыревые

Припой с

каналом

канифоли

0,25 м

Радиатор

FT188

Печатная плата 52x38мм

Отформуйте выводы радиоэлементов.

Установите все детали согласно рис. 3 в следующей последовательности: сначала резисторы R1...R3, диод D1, колодку для оптореле, конденсаторы С1, С2, штыревые контакты, затем симистор TR1, предварительно установив его на радиатор.

Установите оптореле DA1 в колодку. При установке активных элементов (микросхема DA1, диод D1, симистор TR1) соблюдайте их полярность. Промойте плату от остатков флюса этиловым или изопро-пиловым спиртом. Подключите провода для управляющего напряжения и провода нагрузки.

ПОРЯДОК НАСТРОЙКИ

Правильно собранное устройство не требует настройки. Однако перед его использованием необходимо проделать несколько операций: проверьте правильность установки микросхемы DA1 и диода D1 и правильность подключения источника управляющего напряжения. Подключите нагрузку, например, лампу накаливания напряжением 220 В, рассчитанную на мощность 100 Вт, как показано на рис. 3.

При подаче управляющего напряжения (5.15 В) лампа накаливания должна засветиться.

ЗАКЛЮЧЕНИЕ

Чтобы сэкономить время и избавить вас от рутинной работы по поиску необходимых компонентов и изготовлению печатных плат, МАСТЕР КИТ предлагает набор NF249: «Оптореле». Набор состоит из заводской печатной платы, всех необходимых компонентов и подробной инструкции по сборке и эксплуатации.

Более подробно ознакомиться с ассортиментом нашей продукции можно с помощью каталога «МАСТЕР КИТ-2005» и на нашем сайте: www. masterkit.ru , где представлено много полезной информации по электронным наборам, блокам и модулям МАСТЕР КИТ, приведены адреса магазинов, где их можно купить. Наш ассортимент постоянно расширяется и дополняется новинками, созданными с использованием новейших достижений современной электроники.

Наборы МАСТЕР КИТ

можно купить в магазинах радиодеталей вашего города.