Схема бегущего огонька со светящейся дорожкой. Бегущие огни на светодиодах своими руками — схема на микроконтроллере ATtiny2313


Среди десятков разнообразных светодиодных мигалок достойное место занимает схема бегущих огней на светодиодах, собранная на микроконтроллере ATtiny2313. С её помощью можно создавать различные световые эффекты: от стандартного поочерёдного свечения до красочного плавного нарастания и затухания огня. Один из вариантов того, как сделать своими руками бегущий огонь на светодиодах под управлением МК ATtiny2313, рассмотрим на конкретном примере.

Сердце бегущих огней

То, что AVR микроконтроллеры Atmel обладают высокими эксплуатационными характеристиками – всем известный факт. Их многофункциональность и лёгкость программирования позволяет реализовывать самые необыкновенные электронные устройства. Но начинать знакомство с микроконтроллерной техникой лучше со сборки простых схем, в которых порты ввода/вывода имеют одинаковое назначение.

Одной из таких схем являются бегущие огни с выбором программ на ATtiny2313. В данном микроконтроллере есть всё необходимое для реализации подобных проектов. При этом он не перегружен дополнительными функциями, за которые пришлось бы переплачивать. Выпускается ATtiny2313 в корпусе PDIP и SOIC и имеет следующие технические характеристики:

  • 32 8-битных рабочих регистра общего назначения;
  • 120 операций, выполняемых за 1 тактовый цикл;
  • 2 кБ внутрисистемной flash-памяти, выдерживающей 10 тыс. циклов запись/стирание;
  • 128 байт внутрисистемной EEPROM, выдерживающей 100 тыс. циклов запись/стирание;
  • 128 байт встроенной оперативной памяти;
  • 8-битный и 16-битный счётчик/таймер;
  • 4 ШИМ канала;
  • встроенный генератор;
  • универсальный последовательный интерфейс и прочие полезные функции.

Энергетические параметры зависят от модификации:

  • ATtiny2313 – 2,7-5,5В и до 300 мкА в активном режиме на частоте 1 МГц;
  • ATtiny2313А (4313) – 1,8-5,5В и до 190 мкА в активном режиме на частоте 1 МГц.

В ждущем режиме энергопотребление снижается на два порядка и не превышает 1 мкА. Кроме этого данное семейство микроконтроллеров обладает целым рядом специальных свойств. С полным перечнем возможностей ATtiny2313 можно ознакомиться на официальной страничке производителя www.atmel.com.

Схема и принцип её работы

В центре принципиальной электрической схемы расположен МК ATtiny2313, к 13-ти выводам которого подключены светодиоды. В частности, для управления свечением полностью задействован порт В (PB0-PB7), 3 вывода порта D (PD4-PD6), а также PA0 и PA1, которые остались свободными из-за применённого внутреннего генератора. Первый вывод PA2 (Reset) не принимает активного участия в схеме и через резистор R1 соединён с цепью питания МК. Плюс питания 5В подаётся на 20-й вывод (VCC), а минус – на 10-й вывод (GND). Для исключения помех и сбоев в работе МК по питанию установлен полярный конденсатор С1.
С учётом небольшой нагрузочной способности каждого вывода подключать следует светодиоды, рассчитанные на номинальный ток не более 20 мА. Это могут быть как сверхъяркие led в DIP корпусе с прозрачной линзой, так и smd3528. Всего их в данной схеме бегущих огней 13 шт. В качестве ограничителей тока выступают резисторы R6-R18.

Нумерация светодиодов на схеме указана в соответствии с прошивкой.

Через цифровые входы PD0-PD3, а также с помощью кнопок SB1-SB3 и переключателя SA1 производится управление работой схемы. Все они подключены через резисторы R2, R3, R6, R7. На программном уровне предусмотрено 11 различных вариаций мигания светодиодов, а также последовательный перебор всех эффектов. Выбор программы задаётся кнопкой SB3. В пределах каждой программы можно изменять скорость её выполнения (мигания светодиодов). Для этого переключатель SA1 переводят в замкнутое положение (скорость программы) и кнопками увеличения (SB1) и уменьшения (SB2) скорости добиваются желаемого эффекта. Если SA1 разомкнуть, то кнопки SB1 и SB2 будут регулировать яркость светодиодов (от слабого мерцания до свечения на номинальной мощности).

Печатная плата и детали сборки

Специально для начинающих радиолюбителей предлагаем два варианта сборки бегущих огней: на макетной и на печатной плате. В обоих случаях рекомендуется использовать микросхему в PDIP корпусе, устанавливаемую в DIP-20 панельку. Все остальные детали также в DIP корпусах. В первом случае достаточно будет макетной платы 50х50 мм с шагом 2,5 мм. При этом светодиоды можно разместить, как на плате, так и на отдельной линейке, соединив их с макетной платой гибкими проводами.

Если бегущие огни на светодиодах предполагается активно использовать в дальнейшем (например, в автомобиле, велосипеде), то лучше собрать миниатюрную печатную плату. Для этого понадобится односторонний текстолит размером 55*55 мм, а также радиоэлементы.

Один из вариантов использования твердотельных источников света в декоративных целях – бегущие огни на светодиодах. Способов изготовления этого несложного устройства – масса. Рассмотрим некоторые из них.

Простейшая схема бегущих огней на 12 вольт

В интернете наиболее часто встречается простая «старомодная» схема с использованием счетчика и генератора (рисунок 1).

Рисунок 1

Работа схемы предельно проста и понятна. Генератор построен на основе таймера импульсов, а счетчик выполняет свою основную функцию – считает импульсы и выдает соответствующие логические уровни на своих выходах. К выходам подключены светодиоды, которые загораются при появлении логической единицы и соответственно гаснут при нуле, создавая тем самым эффект бегущих огней. Скорость переключения зависит от частоты генератора, которая в свою очередь зависит от номиналов резистора R1 и конденсатора С1.

Наименования микросхем приведены советские, но они имеют легкодоступные импортные аналоги. Если необходимо увеличить , то для увеличения тока нужно подключать их через буферные транзисторы, т.к. сами выходы счетчика имеют достаточно скромную нагрузочную способность.

Подключаем «мозги»

Для получения более сложных эффектов, схема должна строиться на микроконтроллере (далее МК). Хотя в интернете и присутствует множество схем бегущих огней на микроконтроллере, построенных на обыкновенной логике, реализующих различную последовательность зажигания светодиодов, их использование неоправданно и нецелесообразно в наши дни.

Схемы получаются более громоздкими и дорогими. МК же позволяет гибко управлять отдельными светодиодами или их группами, хранить в памяти множество программ световых эффектов и при необходимости чередовать их по заранее заданной последовательности или по внешней команде (например, от кнопки). При этом схема получается весьма компактной и достаточно дешевой.

Рассмотрим основной принцип построения схемы бегущих огней на светодиодах с использованием микроконтроллера.

Для примера возьмем микросхему ATtiny2313 – 8-разрядный МК стоимостью около 1$. Простейшая схема может быть реализована непосредственным подключением светодиодов к выводам I/O (рисунок 2). Эти выводы МК способны обеспечить ток до 20 мА, что более чем достаточно для индикаторных светодиодов.

Необходимое значение тока задается резисторами, включенными последовательно диодам. Значение силы тока рассчитывается по формуле I=(U пит -U LED)/R. Схемы питания и сброса МК на рисунке не приведены, чтобы не загромождать схему. Эти цепи стандартные и выполняются в соответствии с рекомендациями производителя, приведенными в Data Sheet. При необходимости точного задания временных интервалов (длительности зажигания отдельных светодиодов или полного цикла) можно использовать кварцевый резонатор, подключаемый к выводам 4 и 5 МК.

Если такой необходимости нет, можно обойтись встроенным RC-генератором, а освободившиеся выводы назначить как стандартные выходы и подключить еще пару светодиодов. Максимальное количество светодиодов, которое можно подключить к этому МК – 17 (на рисунке 2 показан вариант подключения 10 светодиодов). Но лучше оставить один-два вывода для кнопок управления, чтобы была возможность переключать режимы бегущего огня.

Рисунок 2

Вот и всё, что касается «железа». Дальше всё зависит от программного обеспечения. Алгоритм может быть любым. К примеру, можно записать в память несколько режимов и настроить интервал повторения каждой либо подключить две кнопки: одну для переключения режимов, другую для регулировки скорости. Написание подобной программы – достаточно простая задача даже для человека никогда не работавшего ранее с МК, однако если изучать программирование лень или некогда, а «оживить» бегущий огонь на светодиодах очень хочется – всегда можно скачать готовое ПО.

Приведенная в данной статье самодельная схема бегущие огни на светодиодах, построена на довольно популярном . В памяти программы записано до 12 программ различных световых эффектов, которые можно выбрать по своему желанию. Это и бегущий огонь, бегущая тень, нарастающий огонь и так далее.

Этот автомат световых эффектов позволяет управлять тринадцатью светодиодами, которые подключены через токоограничивающие резисторы прямо к портам микроконтроллера ATtiny2313.Как уже было сказано выше, в памяти микроконтроллера зашиты 11 различных самостоятельных комбинаций световых рисунков, а так же есть возможность последовательного однократного перебора всех 11 комбинаций, это уже будет 12-ая программа.

Кнопка SA3 позволяет осуществлять переключение между программами.

Кнопками SA1 и SA2 можно управлять скоростью движения огней либо частотой мерцания каждого светодиода (от постоянного свечения до легкого мерцания). Все это зависит, в каком положении находится переключатель SA4. При верхнем по схеме положении переключателя SA4 регулируется скорость бегущих огней, а при нижнем частота мерцания.

При монтаже светодиодов в линейку следует соблюдать очередность такую же, как пронумеровано на схеме от HL1 до HL11.

Микроконтроллер ATtiny2313 тактируется от внутреннего генератора с частотой 8 МГц.

Видео работы: Бегущие огни на светодиодах

(1,1 Mb, скачано: 3 657)

Первый радиолюбительский вариант схемы бегущих огней на светодиодах, построен на уже зарекомендовавшем себя микроконтроллере ATtiny2313. В прошивки находится двенадцать возможных комбинаций различных световых эффектов, таких как плавно изменяющиеся огни, перелевающаяся тень, нарастающий огонь и т.п. ниже рассмотрены конструкции без микроконтроллера, но уже на несколько устаревшей элементной базе.


Эта конструкция способна осуществлять управление тринадцатью светодиодами, которые подсоединены через токоограничивающие резисторы напрямую к портам микроконтроллера ATtiny2313.

Тумблером SA3 можно осуществлять переключение между возможными вариантами работы. Тумблерами SA1 и SA2 можно регулировать скорость движения огней или частоту мигания каждого светодиода отдельно. Все это зависит, от положения тумблера SA4. При верхнем положении он регулирует скорость бегущих огней, а при нижнем частота мигания.

При установке светодиодов в линейку необходимо соблюдать очередность как указано на рисунке от HL1 до HL11. Микроконтроллер ATtiny2313 тактируем от имеющегося внутреннего генератора с частотой 8 МГц.

В предлагаемом устройстве очередность зажигания гирлянд для создания эффекта осуществляется с помощью трех электромагнитных реле путем использования различных значений напряжения, поступающего в цепь их обмоток


При подаче напряжения питания от сети оно поступает на первичную обмотку сетевого трансформатора Т1, к вторичной обмотке которого подключен выпрямитель, собранный по схеме с удвоением напряжения на диодах VD1, VD2 и конденсаторах С2, СЗ. Эффективное напряжение вторичной обмотки трансформатора составляет 13,5 Б. Поэтому выпрямленное напряжение в результате удвоения оказывается равным около 32 В. В исходном состоянии транзистор VT1, включенный по схеме с общим коллектором, заперт, поскольку конденсатор С1 разряжен. При этом все реле обесточены и горит гирлянда HL1.

Начинается заряд, конденсатора С1. По мере заряда конденсатора напряжение на нем и на эмиттере транзистора растет. Когда оно достигнет значения, при котором ток в обмотке реле КЗ превысит ток срабатывания, контакты К3.1 переключатся, лампы HL1 погаснут, а лампы HL2 загорятся. Дальнейшее увеличение напряжения на эмиттере транзистора приводит к срабатыванию реле К2, которое контактами К2.1 выключит лампы HL2 и включит HL3. Наконец, продолжающееся увеличение напряжения приводит к срабатыванию реле К1, контакты которого К1.1 разряжают конденсатор С1.

В результате запирается транзистор, все реле обесточиваются, зажигаются лампы HL1, а контакты К1.1 размыкаются. Тогда конденсатор вновь начинает заряжаться и процесс повторяется. Скорость заряда конденсатора и перемещения бегущего огня можно регулировать переменным резистором R2. В качестве сетевого трансформатора используется выходной трансформатор кадровой развертки ТВК-110ЛМ от черно-белых телевизоров. Из двух вторичных обмоток используется та, сопротивление которой составляет 1 Ом. Автор предложил использовать электромагнитные реле типа РЭС9.

Однако, ни одно реле этого типа не предназначено на коммутацию переменного напряжения 220 В (только 115). Поэтому советуем установить реле РЭС10, паспорт РС4.524.302 (РС4.529.031-03 согласно ГОСТ 16121-86). Их ток срабатывания составляет 22 мА, а сопротивление обмотки - 630 Ом. Таким образом, устройство К3 сработает при напряжении на эмиттере VT113,9 В. Благодаря включению резисторов R4 и R5 остальные два реле срабатывают при более высоком напряжении на эмиттере транзистора. Реле К2 срабатывает при напряжении 20,5 В, а реле К1 - при напряжении 23,3 В. Максимально допустимое напряжение на обмотке реле указанного типа составляет 36 В. Его контакты позволяют коммутировать переменное напряжение частотой 50 Щ и напряжением до 250 В при токе активной нагрузки до 0,3 А. Отсюда, каждая гирлянда может быть собрана из 9 соединенных последовательно лампочек накаливания типа МН26-0Д2, рассчитанных на номинальное напряжение 26 В и ток 0,12 А.

Конструкция представляет собой мультивибратор, состоящий из трех каскадов. Отпирание транзисторов и зажигание включенных в их цепи светодиодов осуществляется последовательно один за другим.

При сборке устройства желательно подобрать транзисторы с возможно большим коэффициентом усиления по току, а конденсаторы с минимальной утечкой.

Схема бегущих огней на микросхемах К561ЛА7 и К561ИЕ8

Схема достаточно простая состоит из двух микросхем и десятка светодиодов, которые поочередно загораются.

Для регулировки скорости бегущих огней используется потенциометр R2.