Пуск асинхронного двигателя переключением со звезды на треугольник. Способ уменьшения пусковых токов электродвигателя


Вытекает, что регулирование скорости вращения асинхронных электро­двигателей можно осуществить:

изменением частоты питающего тока;

изменением числа «ар полюсов обмотки статора;

введением дополнительных сопротивлений в цепь обмотки ротора.

Первые два способа используются для регулирования скоро­сти вращения электродвигателей с короткозамкнутым ротором, а последний - электродвигателей с фазным ротором (с кон­тактными кольцами).

Регулирование скорости вращения изменением частоты пи­тающего тока используется очень редко, так как этот способ применим лишь в случае, когда электродвигатель питается от отдельного генератора. В этом случае для регулирования скоро­сти необходимо менять скорость вращения питающего генератора в такой же пропорции, е какой должна меняться скорость регулируемого электродвигателя. Бели же электродвигатель пи­тается от сети трехфазного тока, то осуществить регулирование его скорости изменением частоты невозможно. На практике ре­гулирование скорости изменением частоты применяется лишь в. гребных электрических установках переменного тока, в кото­рых мощные гребные электродвигатели получают питание от отдельных генераторов и поэтому частоту питающего тока мож­но регулировать произвольно.

Наиболее часто на практике применяется второй способ, позволяющий достаточно просто осуществлять ступенчатое ре­гулирование скорости вращения асинхронных электродвигателей с короткозамкнутым ротором. Если имеется возможность из­менять число пар полюсов обмотки статора [см. формулу (80) ] то, следовательно, имеется возможность ступенчатого регулиро­вания скорости вращения электродвигателя, так как число пар полюсов может быть равно 1, 2, 3 и т. д. Электродвигатели, до­пускающие переключение числа пар полюсов, должны иметь в пазах статора либо несколько независимых обмоток, либо од­ну обмотку со специальным переключающим устройством. Оте­чественная промышленность выпускает двух-, трех- и четырех- скороетные электродвигатели, используемые:в основном на морском транспорте и на некоторых кранах. Когда числа полю­сов значительно отличаются друг от друга, двух скор осиные электродвигатели изготовляются с двумя независимыми об­мотками. Одна, например, может быть выполнена на 2р = 2, а вторая на 2р = 8 полюсов. Тогда при подключении к сети пер­вой обмотки магнитное поле статора будет вращаться со скоростью n 1 = 60·50 / 1 = 3000 об /мин , а при подключении к сети второй обмотки - со скоростью n 1 = 60·50 / 4 = 750 об /мин . Соответствую­щим образом будет изменяться при этом и скорость вращения ротора n 2 = n 1 (1-s ).

Часто в пазы статора двухскоростного электродвигателя закладывают одну обмотку, но выполняют ее так, чтобы мож­но было включать ее при необходимости треугольником (рис. 49, а ) и двойной звездой (рис. 49, б ). При включении такой обмотки треугольником число полюсов равно 2р = 2а , а при вклю­чении двойной звездой 2р = а (где а - любое целое число), т. е. при переходе от треугольника к двойной звезде число пар по­люсов статорной обмотки уменьшается вдвое, а скорость элек­тродвигателя возрастает вдвое.

Регулирование переключением числа пар полюсов применя­ется только для электродвигателя с короткозамкнутым рото­ром, потому что у электродвигателей с фазным ротором одно

временно с переключением обмотки статора требуется переклю­чать и обмотку ротора, что усложняет конструкцию электродви­гателя и переключающего устройства. Данный способ регули­рования скорости отличается высокой экономичностью, но он не лишен и недостатков. В частности, регулирование скорости происходит не плавно, а скачками, требуется довольно сложное переключающее устройство, в особенности при числе скоростей большем двух; при переходе с одной скорости на другую раз­рывается цепь статора, при этом неизбежны толчки тока и мо­мента, коэффициент мощности при низших скоростях ниже, чем при высших из-за увеличения рассеяния магнитного потока.

Регулирование скорости введением дополнительных сопро­тивлений в цепь ротора возможно только у электродвигателей с фазным ротором. Согласно уравнению (97) , при введении раз­личных активных сопротивлений в цепь ротора жесткость ха­рактеристик изменяется (рис. 50), т. е. при одной и той же на­грузке скорость электродвигателя будет различной. Очевидно, чем выше величина дополнительного сопротивления, тем мягче искусственная характеристика и тем ниже скорость электродви­гателя.

Допустим электродвигатель работает с установившейся ско­ростью n 1 на естественной характеристике а в точке 1 , развития некоторый вращающий момент М 1 = М c . При введении в цепь ротора некоторого сопротивления R 1 электродвигатель перей­дет на работу по характеристике b , уравнение которой

Так как в момент включения сопротивления скорость электро­двигателя практически не изменится, переход с характеристи­ки а на характеристи­ку b произойдет по гори­зонтали 1 -2 , причем вра­щающий момент электро­двигателя снизится до М 2 , который меньше мо­мента сопротивления ме­ханизма М , поэтому ско­рость электродвигателя будет падать, а скольже­ние возрастать. При воз­растании скольжения мо­мент, согласно выраже­нию (92) , увеличивается до тех пор, пока момент электродвигателя вновь не станет равным момен­ту сопротивления ме­ханизма, после чего наступит равновесие моментов и двигатель будет вращаться с новой установившейся скоростью n 3 (точ­ка 3 ).

При необходимости дополнительно может быть включено сопротивление R 2 . Тогда скорость электродвигателя снизится до величины n 5 . При отключении сопротивлений скорость элект­родвигателя будет возрастать, при этом переход с одной харак­теристики на другую происходит в обратном порядке, как по­казано на рис. 50.

Последний способ позволяет получить широкий диапазон скоростей, но является крайне неэкономичным, так как при увеличении активного сопротивления цепи ротора растут потери энергии в электродвигателе, а значит уменьшается его к. п. д. Сами регулировочные реостаты, особенно для мощных электро­двигателей, получаются громоздкими и выделяют много тепла.

Необходимо также иметь в виду, что большинство электро­двигателей в настоящее время выполняется с самовентиляцией.

Вследствие этого при понижении скорости вращения охлаж­дение ухудшается и электродвигатель не может развивать но­минальный вращающий момент.

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей .


Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

Регулирование скорости с помощью изменения активного сопротивления в цепи ротора

Этот способ регулирования скорости применим в двигателях с фазным ротором . При этом в цепь обмотки ротора включается реостат, которым можно плавно увеличивать сопротивление. С увеличением сопротивления, скольжение двигателя растёт, а скорость падает. Таким образом, обеспечивается регулировка скорости вниз от естественной характеристики.

Недостатком данного способа является его неэкономичность, так как при увеличении скольжения, потери в цепи ротора растут, следовательно, КПД двигателя падает. Плюс к этому, механическая характеристика двигателя становится более пологой и мягкой, из-за чего небольшое изменение момента нагрузки на валу, вызывает большое изменение частоты вращения.


Регулирование скорости данным способом не эффективно, но, несмотря на это применяется в двигателях с фазным ротором.

Регулирование скорости двигателя с помощью изменения напряжения питания

Данный способ регулирования можно осуществить, если включить в цепь автотрансформатор, перед статором, после питающих проводов. При этом, если снижать напряжение на выходе автотрансформатора, то двигатель будет работать на пониженном напряжении. Это приведёт к снижению частоты вращения двигателя, при постоянном моменте нагрузки, а также к снижению перегрузочной способности двигателя. Это связано с тем, что при уменьшении напряжения питания, максимальный момент двигателя уменьшается в квадрат раз. Кроме того, этот момент уменьшается быстрее, чем ток в цепи ротора, а значит, растут и потери, с последующим нагревом двигателя.

Способ регулирования изменением напряжения, возможен только вниз от естественной характеристики, так как увеличивать напряжение выше номинального нельзя, потому что это может привести к большим потерям в двигателе, перегреву и выходу его из строя.

Кроме автотрансформатора, можно использовать тиристорный регулятор напряжения.

Регулирование скорости с помощью изменения частоты питания

При данном способе регулирования, к двигателю подключается преобразователь частоты (ПЧ). Чаще всего это тиристорный преобразователь частоты. Регулирование скорости осуществляется изменением частоты напряжения f, так как она в данном случае влияет на синхронную скорость вращения двигателя.

При снижении частоты напряжения, перегрузочная способность двигателя будет падать, чтобы этого не допустить, требуется повысить величину напряжения U 1 . Значение на которое нужно повысить, зависит от того какой привод. Если регулирование производится с постоянным моментом нагрузки на валу, то напряжение нужно изменять пропорционально изменению частоты (при снижении скорости). При увеличении скорости этого делать не следует, напряжение должно оставаться на номинальном значении, иначе это может причинить вред двигателю.

Если регулирование скорости производится с постоянной мощностью двигателя (например, в металлорежущих станках), то изменение напряжения U 1 необходимо производить пропорционально квадратному корню изменения частоты f 1 .

При регулировании установок с вентиляторной характеристикой , необходимо изменять подводимое напряжение U 1 пропорционально квадрату изменения частоты f 1 .

Регулирование с помощью изменения частоты, является наиболее приемлемым вариантом для асинхронных двигателей, так как при нем обеспечивается регулирование скорости в широком диапазоне, без значительных потерь и снижения перегрузочных способностей двигателя.

Регулирование скорости АД изменением числа пар полюсов

Такой способ регулирования возможен только в многоскоростных асинхронных двигателях с короткозамкнутым ротором, так как число полюсов этого ротора, всегда равно количеству полюсов статора.

В соответствии с формулой, которая рассматривалась выше, скорость двигателя можно регулировать изменением числа пар полюсов. Причём, изменение скорости происходит ступенчато, так как количество полюсов принимают только определённые значения – 1,2,3,4,5.

Изменение количества полюсов достигается переключением катушечных групп статорной обмотки. При этом катушки соединяются различными схемами соединения, например “звезда - звезда” или “звезда – двойная звезда”. Первая схема соединения даёт изменение количества полюсов в соотношении 2:1. При этом обеспечивается постоянная мощность двигателя при переключении. Вторая схема изменяет количество полюсов в таком же соотношении, но при этом обеспечивает постоянный момент двигателя.

Применение данного способа регулирования оправдано сохранением КПД и коэффициента мощности при переключении. Минусом же является более сложная и увеличенная конструкция двигателя, а также увеличение его стоимости.

Здравствуйте. Своим обзором я продолжу серию обзоров компонентов для «умного дома». И сегодня расскажу о переключателе направления вращения электродвигателя от компании ITEAD. Переключатель подключается к домашней сети Wi-Fi, и вы можете управлять им через интернет из любой точки мира. В обзоре я протестирую его работу, и выскажу свои соображения по улучшению и расширению возможностей переключателя. Если вам это интересно – добро пожаловать под кат.

Поставляется переключатель в антистатическом пакете:

Его краткие характеристики со страницы сайта производителя ITEAD, он же является и продавцом:

Overview

This WiFi switch supports to control 7-32V DC or 125-250V AC motor’s clockwise/anticlockwise running. The switch adopts PSA 1-channel wifi module to realize motor clockwise/anticlockwise running control. Reversible status will be synchronously feedback to your phone! Input voltage: usb 5V or DC 7-32V.



В переключателе по питанию применён импульсный DC-ВС преобразователь :

Поэтому для питания переключателя возможно подавать на вход постоянное напряжение от 7 до 32 Вольт:

Или переключатель можно запитать 5 вольтами от micro USB:

Перевернём плату и посмотрим на неё снизу:

Не могу не заметить, что плохо смыт флюс у реле и силовых контактов.

Здесь установлена матрица из семи транзисторов Дарлингтона , линейный регулятор с малым падением напряжения и микросхема без наименования:

Давайте для пробы подключим к переключателю двигатель постоянного тока:

Можно подключать двигатели с питанием от 7 до 32 вольт. Питание подключается согласно схеме подключения:

Главное соблюсти цвет проводов, а то работать не будет)))

Подаём питание, в нашем случае 7,5В и теперь пришло время подключить переключатель к приложению для смартфонов :

Как устанавливать и настраивать приложение я подробно описал вот в своём обзоре. С момента выхода того обзора – приложение только похорошело и обзавелось русскоязычным интерфейсом.

Открываем приложение и выбираем добавить устройство. Добавление устройств стало ещё проще и теперь производится за четыре простых шага.

Шаг первый. Нажимаем кнопку на переключателе и удерживаем её нажатой пять секунд:

Шаг второй. Выбираем Wi-Fi сеть и вводим пароль от неё. Если вы уже пользовались данным приложением, то вводить уже ничего не придется:

Третьим шагом приложение ищет и подключает переключатель:

Четвёртый, и последний шаг – задание имени для переключателя:

Переключатель подключен:

Заходим в управление переключателем и нас просят обновить на нём прошивку:

Нажимаем настройку и обновляем прошивку:

Обратите внимание, как изменилось меню настроек переключателя после обновления прошивки:

Теперь здесь появилось возможность выбора действий после отключения питания на переключатель. Возможны три варианта. После возобновления питания двигатель продолжает вращаться в ту же сторону, двигатель останавливается или двигатель начнёт вращаться в другую сторону.

Также возможна установка таймеров обратного отсчёта:

Однократных или повторяющихся таймеров:

Циклических таймеров:

Ручное управление изменением направления вращения происходит при нажатии этой кнопки на экране:

Клавиша включена – двигатель вращается в одну сторону, выключена – вращается в другую сторону.

Так же возможно управление направлением вращения кратковременным нажатием на кнопку на самом переключателе. Светодиоды у реле сигнализируют их работу:

Светодиод у кнопки – сигнализирует подключение к сети. Когда Wi-Fi подключена – он горит. Подключение происходит достаточно быстро. 2-3 секунды. Пока светодиод не загорится – удалённое управление невозможно.

Я проиллюстрировал работу переключателя коротким видео:

Также к переключателю можно подключать электродвигатели переменного тока 125-250 Вольт. Только питание самого переключателя необходимо выполнить отдельно. Как я и писал возможны два варианта подключения питания:

А теперь о том, как компании ITEAD можно было бы улучшить свой продукт, что несомненно расширило бы его области применения.

Первое, и самое существенное. У переключателя отсутствует кнопка «СТОП». Для остановки процесса требуется использование концевых выключателей, кратковременно размыкающих питание переключателя. Но иногда процесс не требуется доводить до конца… И тут уже возникает проблема. Хотя при прерывании питания на переключатель есть возможность отключения сразу двух реле для остановки двигателя. Вы видели это в настройках переключателя. А также хотелось бы иметь возможность автоматического отключения двигателя при повышении нагрузки на нём в отличии от нормальной. Но это уже потребует усложнения схемы. Но я уверен, что такая функция была бы востребована.

Второе. В настройках таймеров очень не хватает секунд. Иногда минута – это слишком много.

И третье. Ручное управление в приложении – очень неинформативно. При смене направления вращения кнопка выключателя показывает включенное или выключенное состояние. Хотелось бы видеть кнопки управления вращением в виде стрелок, для большей наглядности.

Ну а в целом – переключатель весьма полезная вещь в автоматизации процессов. А при вышеуказанных доработках – ему вообще бы цены не было. А пока возможность и область его применения несколько ограничена.

Спасибо за внимание.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +33 Добавить в избранное Обзор понравился +30 +56

Почти все станки в качестве электропривода оснащаются асинхронными двигателями. У них простая конструкция и не высокая стоимость. В связи с этим важным оказывается регулирование скорости асинхронного двигателя. Однако в стандартной схеме включения управлять его оборотами можно только с помощью механических передаточных систем (редукторы, шкивы), что не всегда удобно. Электрическое управление оборотами ротора имеет больше преимуществ, хотя оно и усложняет схему подключения асинхронного двигателя.

Для некоторых узлов автоматического оборудования подходит именно электрическое регулирование скорости вращения вала асинхронного электродвигателя. Только так можно добиться плавной и точной настройки рабочих режимов. Существует несколько способов управления частотой вращения путём манипуляций с частотой, напряжением и формой тока. Все они показаны на схеме.

Из представленных на рисунке способов, самыми распространёнными для регулирования скорости вращения ротора являются изменение следующих параметров:

· напряжения подаваемого на статор,

· вспомогательного сопротивления цепи ротора,

· числа пар полюсов,

· частоты рабочего тока.

Последние два способа позволяют изменять скорость вращения без значительного снижения КПД и потери мощности, остальные способы регулировки способствуют снижению КПД пропорционально величине скольжения. Но и у тех и других есть свои преимущества и недостатки. Поскольку чаще всего на производстве применяются асинхронные двигатели с короткозамкнутым ротором, то все дальнейшие обсуждения будут касаться именно этого типа электродвигателей.

Для частотного регулирования применяют в основном полупроводниковые преобразователи. Их принцип действия основан на особенности работы асинхронного двигателя, где частота вращения магнитного поля статора зависит от частоты напряжения питающей сети. Скорость вращения поля статора определяется по следующей формуле:

n1 = 60f/p, где n1 - частота вращения поля (об/мин), f-частота питающей сети (Гц), p-число пар полюсов статора, 60 - коэффициент пересчета мерности.

Для эффективной работы асинхронного электродвигателя без потерь нужно вместе с частотой изменять и подаваемое напряжение. Напряжение должно меняться в зависимости от момента нагрузки. Если нагрузка постоянная, то напряжение изменяется пропорционально частоте.

Современные частотные регуляторы позволяют уменьшать и увеличивать обороты в широком диапазоне. Это обеспечило их широкое применение в оборудовании с управляемой протяжкой, например, в многоконтактных станках сварной сетки. В них скорость вращения асинхронного двигателя, приводящего в движение намоточный вал, регулируется полупроводниковым преобразователем. Такая регулировка позволяет оператору, следящему за правильностью выполнения технологических операций, ступенчато ускоряться или замедляться по мере настройки станка.


Остановимся на принципе работы преобразователя частоты более подробно. В его основе лежит принцип двойного преобразования. Состоит регулятор из выпрямителя, импульсного инвертора и системы управления. В выпрямителе синусоидальное напряжение преобразуется в постоянное и подаётся на инвертор. В составе силового трёхфазного импульсного инвертора есть шесть транзисторных переключателей. Через эти автоматические ключи постоянное напряжение подаётся на обмотки статора так, что в нужный момент на соответствующие обмотки поступает то прямой, то обратный ток со сдвигом фаз 120°. Таким образом, постоянное напряжение трансформируется в переменное трёхфазное напряжение нужной амплитуды и частоты.

Необходимые параметры задаются через модуль управления. Автоматическая регулировка работы ключей осуществляется по принципу широтно-импульсной модуляции. В качестве силовых переключателей используются мощные IGBT-транзисторы. Они, по сравнению с тиристорами, имеют высокую частоту переключения и выдают почти синусоидальный ток с минимальными искажениями. Не смотря на практичность таких устройств, их стоимость для двигателей средней и высокой мощности остаётся очень высокой.

Регулировка скорости вращения асинхронного двигателя методом изменения числа пар полюсов также относится к наиболее распространённым методам управления электродвигателей с короткозамкнутым ротором. Такие моторы называются многоскоростными. Есть два способа осуществления этого метода:

· укладывание сразу нескольких обмоток с разными числами пар полюсов в общие пазы статора,

· применение специальной намотки с возможностью переключения существующих обмоток под нужное число пар полюсов.

В первом случае чтобы уложить в пазы дополнительные обмотки нужно уменьшить сечение провода, а это приводит к уменьшению номинальной мощности электродвигателя. Во втором случае имеет место усложнение коммутационной аппаратуры, особенно для трёх и более скоростей, а также ухудшаются энергетические характеристики. Более подробно этот и другие способы регулирования скорости асинхронного двигателя описаны в архивном файле, который можно скачать внизу страницы.

Обычно многоскоростные двигатели выпускаются на 2, 3 или 4 скорости вращения, причем 2-х скоростные двигатели выпускаются с одной обмоткой на статоре и с переключением числа пар полюсов в отношении 2: 1 = р2: pt , 3-х скоростные двигатели - с двумя обмотками на статоре, из которых одна выполняется с переключением 2: 1 = Рг: Pi , 4-х скоростные двигатели - с двумя обмотками на статоре, каждая из которых выполняется с переключением числа пар полюсов в отношении 2:1. Многоскоростными электродвигателями оснащаются различные станки, грузовые и пассажирских лифты, они используются для приводов вентиляторов, насосов и т.д.

3.Схема нереверсивного управления пуском трехфазного асинхронного двигателя с фазным ротором.

http://www.ngpedia.ru/pngs/016/0166rYE3L7C0J713C9B4.png\

3) три реле времени /РВ, 2PS и ЗРВ маятникового типа, механически сочлененные соответственно с контакторами К, /У и 2У;
4) кнопки «стоп» и «пуск».
В исходном положении, когда двигатель отключен, все контакторы выключены и в цепь каждой фазы ротора включено суммарное сопротивление гр\ + rp2 + грз всех трех ступеней пускового реостата. При нажатии кнопки «пуск» замыкается цепь катушки контактора К, контактор срабатывает и начинается первый этап пуска двигателя при полном сопротивлении в цепи ротора. Контактор К, срабатывая, приводит в действие механически сочлененное с ним реле времени IP В. Спустя /) секунд это реле замкнет свой контакт в цепи включающей катушки контактора /У.
Контактор 1У срабатывает, и в цепи ротора двигателя останутся включенными сопротивления гр2 + г„3 двух ступеней реостата. Этим начинается второй этап пуска двигателя. Контактор /У приведет в действие сочлененное с ним реле 2РВ, которое через 12 секунд замкнет свой контакт в цепи катушки контактора 2У. Контактор 2У сработает и выключит вторую ступень реостата. В цепи ротора останется включенным только сопротивление грз- Контактор 2У приведет в действие реле ЗРВ и спустя ta секунд замкнется цепь катушки контактора ЗУ. Последний сработает и замкнет обмотки ротора двигателя накоротко, чем и будет завершен процесс пуска двигателя.
При отключении двигателя надо нажать кнопку «стоп». При этом потеряют питание катушки контакторов К, /У, 2У и ЗУ. Контакторы отключатся и вся схема возвратится в исходное положение.
Выше были рассмотрены относительно простые схемы управления асинхронными двигателями. На практике применяются также более сложные схемы, позволяющие управлять процессом пуска, торможения, регулирования и стабилизации скорости электроприводов с двигателями постоянного и переменного тока.
Рис. 18 8. Схема управления пуском нереверсивного асинхронного двигателя с фазным ротором

4. Внутренние РУ

Распределительное устройство (РУ) - электроустановка, служащая для приёма и распределения электрической энергии одного класса напряжения.

Распределительное устройство содержит набор коммутационных аппаратов, вспомогательные устройства РЗиА и средства учёта и измерения

С вопросом регулировки оборотов приходится сталкиваться при работе с электроинструментом, приводом швейных машин и прочих приборов в быту и на производстве Регулировать обороты, просто понижая питающее напряжение, не имеет смысла - электродвигатель резко уменьшает обороты, теряет мощность и останавливается Оптимальным вариантом регулировки оборотов является регулирование напряжения с обратной связью по току нагрузки двигателя

В большинстве случаев в электроинструменте и других приборах применены универсальные коллекторные электродвигатели с последовательным возбуждением. Они хорошо работают как на переменном, так и на постоянном токе. Особенностью работы коллекторного электродвигателя является то, что при коммутации обмоток якоря на ламелях коллектора во время размыкания возникают импульсы противо-ЭДС самоиндукции Они равны питающим по амплитуде, но противоположны им по фазе. Угол смещения противо-ЭДС определяется внешними характеристиками электродвигателя, его нагрузкой и другими факторами. Вредное влияние противо-ЭДС выражается в искрении на коллекторе, потере мощности двигателя, дополнительном нагреве обмоток. Некоторая часть противо-ЭДС гасится конденсаторами, шунтирующими щеточный узел.

Рассмотрим процессы, протекающие в режиме регулирования с ОС, на примере универсальной схемы (рис 1). Резистивно-емкостная цепь R2-R3-C2 обеспечивает формирование опорного напряжения, определяющего скорость вращения электродвигателя.

При увеличении нагрузки скорость вращения электродвигателя падает, снижается и его крутящий момент. Противо-ЭДС, возникающая на электродвигателе и приложенная между катодом тиристора VS1 и его управляющим электродом, уменьшается. Вследствие этого напряжение на управляющем электроде тиристора возрастает пропорционально уменьшению противо-ЭДС. Дополнительное напряжение на управляющем электроде тиристора заставляет его включаться при меньшем фазовом угле (угле отсечки) и пропускать на электродвигатель больший ток, компенсируя тем самым снижение скорости вращения под нагрузкой. Существует как бы баланс импульсного напряжения на управляющем электроде тиристора, составленного из напряжения питания и напряжения самоиндукции двигателя. Переключатель SA1 позволяет при необходимости перейти на питание полным напряжением, без регулировки Особое внимание следует уделить подбору тиристора по минимальному току включения, что обеспечит лучшую стабилизацию скорости вращения электродвигателя

Вторая схема (рис 2) рассчитана на более мощные электродвигатели, применяемые в деревообрабатывающих станках, шлифмашинах, дрелях. В ней принцип регулировки остается прежним. Тиристор в данной схеме следует установить на радиатор площадью не менее 25 см2.

Для маломощных электродвигателей и при необходимости получить очень малые скорости вращения, можно с успехом применить схему на ИМС (рис 3). Она рассчитана на питание 12 В постоянного тока. В случае более высокого напряжения следует запитать микросхему через параметрический стабилизатор с напряжением стабилизации не выше 15В.

Регулировка скорости осуществляется путем изменения среднего значения напряжения импульсов, подаваемых на электродвигатель. Такие импульсы эффективно регулируют очень малые скорости вращения, как бы непрерывно "подталкивая" ротор электродвигателя. При высоких скоростях вращения электродвигатель работает обычным образом.

Весьма несложная схема (рис 4) позволит избежать аварийных ситуаций на линии железной дороги (игрушечной) и откроет новые возможности управления составами. Лампа накаливания во внешней цепи предохраняет и сигнализирует о коротком замыкании на линии, ограничивая при этом выходной ток.

Когда требуется регулировать обороты электродвигателей с большим крутящим моментом на валу, например в электролебедке, может пригодиться двухполупериодная мостовая схема (рис 5), обеспечивающая полную мощность на электродвигателе, что существенно отличает ее от предыдущих, где работала только одна полуволна питающего напряжения.

Диоды VD2 и VD6 и гасящий резистор R2 используются для питания схемы запуска. Задержка открывания тиристоров по фазе обеспечивается зарядом конденсатора С1 через резисторы R3 и R4 от источника напряжения, уровень которого определяется стабилитроном VD8 Когда конденсатор С1 зарядится до порога срабатывания однопереход-ного транзистора VT1, он открывается и запускает тот тиристор, на аноде которого присутствует положительное напряжение. Когда конденсатор разряжается, однопереходный транзистор выключается. Номинал резистора R5 зависит от типа электродвигателя и желаемой глубины обратной связи. Его величина подсчитывается по формуле

где Iм - эффективное значение максимального тока нагрузки для данного электродвигателя Предлагаемые схемы хорошо повторяемы, но требуют подбора некоторых элементов в зависимости от характеристик применяемого двигателя (практически невозможно найти подобные по всем параметрам электродвигатели даже в пределах одной серии).

Литература

1. Electronics Todays. Int N6

2. RCA Corp Manual

3. IOI Electronic Projects. 1977 p 93

5. G. E. Semiconductor Data Hand book 3. Ed

6 .Граф P. Электронные схемы. -М Мир, 1989

7. Семенов И. П. Регулятор мощности с обратной связью. - Радиолюбитель, 1997, N12, С 21.