Зарядное устройство Li-ion аккумуляторов. Адаптер в качестве зарядного устройства для литий-ионных аккумуляторов шуруповерта Зарядка для литий ионных аккумуляторов 18 вольт


Понравились мне мелкие микросхемы для простых зарядных устройств. покупал я их у нас в местном оффлайн магазине, но как назло они там закончились, их долго везли откуда то. Глядя на эту ситуацию, я решил заказать себе их небольшим оптом, так как микросхемы довольно неплохие, и в работе понравились.
Описание и сравнение под катом.

Я не зря написал в заголовке про сравнение, так как за время пути собачка могла подрасти микрухи появились в магазине, я купил несколько штук и решил их сравнить.
В обзоре будет не очень много текста, но довольно много фотографий.

Но начну как всегда с того, как мне это пришло.
Пришло в комплекте с другими разными детальками, сами микрухи были упакованы в пакетик с защелкой, и наклейкой с названием.

Данная микросхема представляет собой микросхему зарядного устройства для литиевых аккумуляторов с напряжением окончания заряда 4.2 Вольта.
Она умеет заряжать аккумуляторы током до 800мА.
Значение тока устанавливается изменением номинала внешнего резистора.
Так же она поддерживает функцию заряда небольшим током, если аккумулятор сильно разряжен (напряжение ниже чем 2.9 Вольта).
При заряде до напряжения 4.2 Вольта и падении зарядного тока ниже чем 1/10 от установленного, микросхема отключает заряд. Если напряжение упадет до 4.05 Вольта, то она опять перейдет в режим заряда.
Так же имеется выход для подключения светодиода индикации.
Больше информации можно найти в , у данной микросхемы существует гораздо более дешевый .
Причем он более дешевый у нас, на Али все наоборот.
Собственно для сравнения я и купил аналог.

Но каково же было мое удивление когда микросхемы LTC и STC оказались на вид полностью одинаковыми, по маркировке обе - LTC4054.

Ну может так даже интереснее.
Как все понимают, микросхему так просто не проверить, к ней надо еще обвязку из других радиокомпонетов, желательно плату и т.п.
А тут как раз товарищ попросил починить (хотя в данном контексте скорее переделать) зарядное устройство для 18650 аккумуляторов.
Родное сгорело, да и ток заряда был маловат.

В общем для тестирования надо сначала собрать то, на чем будем тестировать.

Плату я чертил по даташиту, даже без схемы, но схему здесь приведу для удобства.

Ну и собственно печатная плата. На плате нет диодов VD1 и VD2, они были добавлены уже после всего.

Все это было распечатано, перенесено на обрезок текстолита.
Для экономии я сделал на обрезке еще одну плату, обзор с ее участием будет позже.

Ну и собственно изготовлена печатная плата и подобраны необходимые детали.

А переделывать я буду такое зарядное, наверняка оно очень известно читателям.

Внутри него очень сложная схема, состоящая из разъема, светодиода, резистора и специально обученных проводов, которые позволяют выравнивать заряд на аккумуляторах.
Шучу, зарядное находится в блочке, включаемом в розетку, а здесь просто 2 аккумулятора, соединенные параллельно и светодиод, постоянно подключенный к аккумуляторам.
К родному зарядному вернемся позже.

Спаял платку, выковырял родную плату с контактами, сами контакты с пружинами выпаял, они еще пригодятся.

Просверлил пару новых отверстий, в среднем будет светодиод, отображающий включение устройства, в боковых - процесс заряда.

Впаял в новую плату контакты с пружинками, а так же светодиоды.
Светодиоды удобно сначала вставить в плату, потом аккуратно установить плату на родное место, и только после этого запаять, тогда они будут стоять ровно и одинаково.



Плата установлена на место, припаян кабель питания.
Собственно печатная плата разрабатывалась под три варианта запитки.
2 варианта с разъемом MiniUSB, но в вариантах установки с разных сторон платы и под кабель.
В данном случае я сначала не знал, какбель какой длины понадобится, потому запаял короткий.
Так же припаял провода, идущие к плюсовым контактам аккумуляторов.
Теперь они идут по раздельным проводам, для каждого аккумулятора свой.

Вот как получилось сверху.

Ну а теперь перейдем к тестированию

Слева на плате я установил купленную на Али микруху, справа купленную в оффлайне.
Соответственно сверху они будут расположены зеркально.

Сначала микруха с Али.
Ток заряда.

Теперь купленная в оффлайне.

Ток КЗ.
Аналогично, сначала с Али.

Теперь из оффлайна.



Налицо полная идентичность микросхем, что ну никак не может не радовать:)

Было замечено, что при 4.8 Вольта ток заряда 600мА, при 5 Вольт падает до 500, но это проверялось уже после прогрева, может так работает защита от перегрева, я еще не разобрался, но ведут себя микросхемы примерно одинаково.

Ну а теперь немного о процессе зарядки и доработке переделки (да, даже так бывает).
С самого начала я думал просто установить светодиод на индикацию включенного состояния.
Вроде все просто и очевидно.
Но как всегда захотелось большего.
Решил, что будет лучше, если во время процесса заряда он будет погашен.
Допаял пару диодов (vd1 и vd2 на схеме), но получил небольшой облом, светодиод показывающий режим заряда светит и тогда, когда нет аккумулятора.
Вернее не светит, а быстро мерцает, добавил параллельно клеммам аккумулятора конденсатор на 47мкФ, после этого он стал очень коротко вспыхивать, почти незаметно.
Это как раз тот гистерезис включения повторной зарядки, если напряжение упало ниже 4.05 Вольта.
В общем после этой доработки стало все отлично.
Заряд аккумулятора, светит красный, не светит зеленый и не светит светодиод там, где нет аккумулятора.

Аккумулятор полностью заряжен.

В выключенном состоянии микросхема не пропускает напряжение на разъем питания, и не боится закоротки этого разъема, соответственно не разряжает аккумулятор на свой светодиод.

Не обошлось и без измерения температуры.
У меня получилось чуть более 62 градусов после 15 минут заряда.

Ну а вот так выглядит полностью готовое устройство.
Внешние изменения минимальны, в отличие от внутренних. Блок питания на 5 /Вольт 2 Ампера у товарища был, и довольно неплохой.
Устройство обеспечивает тока заряда 600мА на канал, каналы независимые.

Ну а так выглядело родное зарядное. Товарищ хотел попросить меня поднять в нем зарядный ток. Оно и родного то не выдержало, куда еще поднимать, шлак.

Резюме.
На мой взгляд, для микросхемы за 7 центов очень неплохо.
Микросхемы полностью функциональны и ничем не отличаются от купленных в оффлайне.
Я очень доволен, теперь есть запас микрух и не надо ждать, когда они будут в магазине (недавно опять пропали из продажи).

Из минусов - Это не готовое устройство, потому придется травить, паять и т.п., но при этом есть плюс, можно сделать плату под конкретное применение, а не использовать то, что есть.

Ну и в тоге получить рабочее изделие, изготовленное своими руками, дешевле чем готовые платы, да еще и под свои конкретные условия.
Чуть не забыл, даташит, схема и трассировка -

У многих, наверное, возникает проблема с зарядкой Li-Ion аккумулятора без контроллера, у меня возникла такая ситуация. Достался убитый ноутбук, в аккумуляторе 4 банки SANYO UR18650A оказались живые.
Решил заменить в светодиодном фонарике, вместо трех батареек ААА. Встал вопрос об их зарядке.
Покопавшись в инете нашел кучу схемок, но с деталями у нас в городе туговато.
Пробовал заряжать от зарядки сотового, проблема в контроле заряда, нужно постоянно следить за нагревом, чуть начинает нагреваться нужно отключать от зарядки иначе аккумулятору каюк в лучшем случае, а то и можно устроить пожар.
Решил сделать самостоятельно. Купил в магазине постельку под аккумулятор. На барахолке купил зарядку. Для удобства отслеживания окончания заряда желательно найти с двухцветным светодиодом который сигнализирует о конце заряда. Он переключается с красного на зеленый при окончании зарядки.
Но можно и обычную. Зарядку можно заменить на шнур USB, и заряжать от компьютера или зарядки с USB выходом.
Моя зарядка только для аккумуляторов без контроллера. Контроллер я взял от старого аккумулятора сотового телефона. Она следит за тем, чтобы аккумулятор не был перезаряжен выше напряжения 4.2 В, либо разряжен меньше 2…3 В. Также схема защиты спасает от коротких замыканий, отключая саму банку от потребителя в момент короткого замыкания.
На нем стоят микросхема DW01 и сборка двух MOSFET-транзисторов (M1,M2) SM8502A. Есть и с другими маркировками, но схемы подобны этой, и работает аналогично.

Контроллер заряда от аккумулятора сотового телефона.


Схема контроллера.


Ещё одна схема контроллера.
Главное не перепутать полярность припайки контроллера с постелькой и контроллера с зарядкой. На платке контроллера указаны контакты «+» и «-» .



В постельке возле плюсового контакта желательно сделать явно заметный указатель, красной краской или самоклеющейся пленкой, во избежание переполюсовки.
Собрал всё воедино и вот что получилось.



Заряжает замечательно. При достижении напряжения 4,2 вольта контроллер отключает аккумулятор от зарядки, и переключается светодиод с красного на зелёный. Зарядка закончена. Заряжать можно и другие Li-Ion аккумуляторы, только применить другую постельку. Всем удачи.


Я сделал себе зарядное устройство для четырех литий-ионных аккумуляторов. Кто-то сейчас подумает: ну сделал и сделал, таких полно в интернете. И я сразу хочу сказать, что моя конструкция способна заряжать как одну батарею, так и четыре сразу. Все аккумуляторы заряжаются независимо друг от друга.
Это дает возможность заряжать одновременно батареи из разных устройств и с разным начальным зарядом.
Я сделал зарядник для батарей типа 18650, которые у меня используются в фонарике, powerbanks, ноутбуке и тп.
Схема состоит из готовых модулей и собирается очень быстро и просто.

Понадобится

  • - 4 шт.
  • - 4 шт.
  • Скрепки канцелярские.

Изготовление зарядного устройства под разное количество аккумуляторов

Сначала сделаем батарейный отсек. Для этого берем универсальную монтажную плату с большим количеством отверстий и обычные канцелярские скрепки.


Откусываем у скрепок вот такие уголки.


Вставляем в плату, предварительно примерив по длине батарей нужных вам. Потому, что такое зарядное устройство можно сделать не только под 18650 аккумуляторы.


Запаиваем снизу платы части скрепок.


Затем берем контроллеры зарядки и размещаем их на оставшемся месте платы, желательно напротив каждого аккумулятора.


Контроллер зарядки будет крепиться на вот таких ножках, сделанных из разъема PLS.


Припаиваем сверху модуль и снизу к плате. По этим ножкам побежит ток питания к модулю и ток заряда к батареям.


Четыре секции готовы.


Далее для коммутации зарядных мест установим кнопки или тумблера.


Подключается все это дело вот таким образом:


Вы спросите - почему кнопки только три а не четыре? А я отвечу - так как один модуль всегда будет работать, потому что один аккумулятор будет заряжаться всегда, иначе нет смысла вообще втыкать зарядник.
Напаиваем токопроводящие дорожки.


Итог таков, что кнопками можно подключать место для зарядки от 1 до 4 аккумуляторов.


На модуле заряда установлен светодиод, который показывает что батарея, которая от него заряжается - зарядилась или нет.
Я собрал все устройство за полчаса. Питается оно от 5-ти вольтового блока питания (адаптера), его, кстати, тоже нужно выбирать с умом, чтобы оно тянуло зарядку сразу всех четырех батарей одновременно. Так же всю схему можно питать от USB компьютера.
Подключаем переходник к первому модулю, а дальше включаем нужные кнопки и напряжение с первого модуля будет переходить на другие места, в зависимости от включенных переключателей.

Потерял в командировку родное зарядное устройство от цифрового фотоаппарата. Купить новое типа "лягушка". Жаба задавила, ведь я радиолюбитель и поэтому смогу сам спаять зарядку литиевых аккумуляторов своими руками, к тому же сделать это очень легко. Зарядное устройство абсолютно любого литиевого аккумулятора это источник постоянного напряжения на 5 вольт, отдающий ток заряда, равный 0.5-1.0 емкости батареи. Например, если емкость аккумулятора 1000 mAh , зарядное устройство должно выдавать ток не менее 500 mA.

Не верите, так попробуйте, а мы поможем.

Процесс заряда показан на графике. В первоночальный момент зарядный ток постоянен, при достижении уровня напряжения Umax на аккумуляторе, ЗУ переходит в режим, когда напряжение будет постоянным, а ток асимптотически стремится к нулю.


Зарядка литиевых аккумуляторов график процесса

Выходное напряжение литиевых аккумуляторов, обычно, составляет 4,2В, а номинальное напряжение составляет порядка 3,7В. Не рекомендуется заряжать эти батареи до полных 4,2В, так как это снижает их срок службы. Если снизить выходное напряжение до 4,1В, емкость упадет почти на 10%, но в тоже время количество циклов заряд-разряд возрастет почти в два раза. При эксплуатации этих батарей, крайне нежелательно доводить номинальное напряжение ниже уровня 3,4…3,3В.


Зарядка литиевых аккумуляторов схема на LM317

Как видим схема достаточно простая. Построена на стабилизаторах LM317 и TL431. Еще из радиокомпонентов присутствуют пару диодов, сопротивлений и конденсаторов. Устройство почти не требует регулировки, достаточно подстроечным сопротивлением R8 задаем напряжение на выходе устройства на номинале 4,2 вольта без подключенного аккумулятора. Сопротивлениями R4 и R6 устанавливаем зарядной ток. Для индикации работы конструкции предназначен светодиод "заряд", который при подключенной пустой батареи горит, а по мере зарядки он тухнет.

Приступаем к сборке конструкции для зарядки литиевых аккумуляторов. Находим подходящий корпус в нем можно разместить простой трансформаторный блок питания на пять вольт, и выше рассмотренную схему.

Для подключения заряжаемой батареи вырезал две латунные полоски и установил их на гнезда. Гайкой настраивается расстояние между контактами, которые подключаются к заряжаемой батареи.


Сделал, что-то вроде прищепки. Можно также установить переключатель, для смены полярности на гнездах зарядного устройства - в некоторых случаях это может сильно выручить. Печатную плату предлагаю изготовить по методу ЛУТ, рисунок в формате Sprint Layout забираем по ссылке выше.

При огромной массе положительных характеристик имеется у литиевых батарей и существенные недостатки, такие как высокая чувствительность к превышению напряжения заряда, что может повлечь за собой нагрев и интенсивное газообразование. А так как батарея имеет герметичную конструкцию, избыточное выделение газа привидеть к вздутию или взрыву. Кроме того литиевые батареи терпеть не могут перезаряд.

Благодаря использованию специализированных микросхем в фирменных зарядках, которые контролируют напряжение, такая проблема многим пользователям не знакома, но это не значит, что ее не существует. Поэтому для зарядки литиевых аккумуляторов нам нужно именно такое устройство, а схема рассмотренная выше является лишь его прототипом.


Зарядка литиевых аккумуляторов схема универсальная

Устройство позволяет заряжать литиевые батареи с напряжением 3,6В или 3,7В. На первом этапе заряд осуществляется стабильным током 245мА или 490мА (устанавливается вручную), при увеличении напряжения на батареи до уровня 4,1В или 4,2В заряд продолжается при поддержании стабильного напряжения и уменьшающемся значении зарядного тока, как только последний упадет до порогового значения (задается вручную от 20мА до 350мА) заряд батареи автоматически прекращается.

Стабилизатор LM317 поддерживает напряжение на сопротивлении R9 на уровне около 1,25В тем самым поддерживая стабильное значение тока идущего через него, а значит и через заряжаемый аккумулятор. Выходное напряжение ограничивается стабилизатором TL431, подключенного к управляющему входу LM317. Значение напряжения ограничения выбирается с помощью делителя на сопротивлениях R12…R14. Сопротивление R11 ограничивает ток питания TL431.

На операционном усилителе DA2.2 LM358, сопротивлениях R5…R8 и биполярном транзисторе VT2 построен преобразователь ток-напряжение. Напряжение на его выходе пропорционально току, протекающему через сопротивление R9 и вычисляется по формуле:

При значениях, на схеме коэффициент преобразования тока в напряжение равен 10, т.е. при токе через сопротивление R9 245мА напряжение на R5 равно 2,45В.

С R5 напряжение следует на неинвертирующий вход ОУ DA2.1. На инвертирующий вход компаратора поступает напряжение с регулируемого делителя на сопротивлениях R2…R4. Напряжение питания делителя стабилизируется LM78L05. Порог переключения компаратора устанавливается номиналом переменного сопротивления R3.

Зарядка литиевых аккумуляторов настройка схемы.

Вместо тумблера SB1 поставить перемычку и подав напряжение на схему, подбором сопротивлений R12…R14 сделать выходное напряжение 4,1В и 4,2В для разомкнутого и замкнутого состояния тумблера SA2.

Тумблером SA1 устанавливаем значение тока заряда (245мА или 490мА) . Тумблером SA2 выбираем максимальное значение напряжения, для аккумуляторов на 3,6В выбираем 4,1В, на 3,7В - 4,2В. Движком переменного сопротивления R3 задаем значение тока, при котором должен завершиться заряд батареи (ориентировочно 0,07…0,1С), подсоединяем аккумулятор и нажимаем тумблер SB1. Должен стартовать процесс заряда литиевой батареи и загорается индикатор на светодиоде VD2. При уменьшении тока заряда ниже порогового высокий уровень на выходе DA2.1 поменяется на низкий, полевой транзистор VT1 закрывается и катушка реле K1 отключается, разрывая своим фронтовым контактом K1 батарею от зарядного устройства.


Привожу рисунок печатной платы зарядного устройство и рекомендую ее изготовить своими руками по

Для возможности заряда литиевых аккумуляторов от мобильных телефонов и смартфонов был сделан универсальный адаптер:

Все аккумуляторы этого типа необходимо эксплуатировать в соответствии с определенными рекомендациями. Эти правила можно условно поделить на две группы: Не зависящие и зависящие от пользователя.

В первую группу попадают основополагающие правила заряда и разряда аккумуляторных батарей, которые контролируются специальным контроллером зарядного устройства:

Литиевый аккумулятор должен находиться в состоянии, при котором его напряжение не должно быть более 4.2 вольта и не опускаться ниже 2.7 вольта. Эти пределы являются уровнями максимального и минимального заряда. Минимальный уровень в 2,7 вольта актуален для батарей с электродами из кокса, однако современные литиевые аккумуляторы изготавливаются с электродами из графита. Для них минимальный предел равен 3 вольтам.
Количество энергии, отдаваемой батареей при изменении заряда от 100% до 0%, - это емкость аккумулятора . Ряд производителей ограничивает максимальное напряжение уровнем в 4.1 вольта, при этом литиевая батарея прослужит гораздо больше, но потеряет в емкости где-то на 10%. Иногда нижний предел повышается до 3.0 и даже 3.3 вольт, но также с снижением уровня емкости.
Наибольший срок эксплуатаии аккумуляторов бывает при 45% зхаряде, а при увеличении или уменьшении срок жизни сокращается. Если заряд находится в указанном выше диапазоне изменение срока эксплуатации не значительно.
Если напряжение на аккумуляторе выходит за пределы, указанные выше, даже на короткое время, срок его эксплуатации резко падает.
Контроллеры аккумуляторов зарядных устройств никогда не дают напряжению на аккумуляторе во время заряда стать выше 4.2 вольта, но могут по-разному ограничивать минимальный уровень при разряде.

Ко второй группе зависящих от пользователя входят следующие правила:

Старайтесь не разряжать аккумулятор до минимального уровня заряда и, тем более, до состояния, когда устройство само отключается, ну, а если это произошло, то желательно зарядить батарею как можно быстрее.
Не бойтесь частых подзарядок, в том числе и неполных литиевому аккумулятору это совершенно пофигу.
Емкость аккумулятора зависит от температуры. Так, при 100% уровне заряда при комнатной температуре, при выходе на мороз заряженность батареи упадет до 80%, что в принципе не опасно и не критично. Но может быть и наоборот если 100% заряженный аккумулятор положить на батарею, его уровень заряда увеличится до 110%, а это для него очень опасно и может резко сократить срок его жизни.
Идеальным условием для длительного хранения аккумулятора является нахождение вне девайса с зарядом около 50%
Если после приобретения батареи повышенной ёмкости через несколько дней эксплуатации. Устройство с батареей начинает глючить и виснуть или отключается зарядка аккумулятора, то скорей всего ваше зарядное устройство, которое отлично работало на старом аккумуляторе, просто не способно обеспечить необходимый ток зарядки для большой емкости.

Подборка оригинальных зарядок для телефонов состоящая только из простых и интересных радиолюбительских идей и разработок


Эта радиолюбительская конструкция предназначено для зарядки литиевых аккумуляторов от мобильных телефонов и типа 18650, а самое главное обеспечивает правильную зарядку аккумулятора. Устройство обладает светодиодным индикатором заряда. Красный цвет говорит о том, что батарея заряжается, зеленый - аккумулятор полностью заряжен. Умная зарядка получается благодоря применению специализированного контролера заряда на микросхеме BQ2057CSN.

В современных литиевых аккумуляторах чистый литий не используют. Поэтому получили распространены три основных разновидности литиевых аккумуляторов: Литий-ионные (Li-ion) Uном. - 3,6V; Литий-полимерные (Li-Po, Li-polymer или «липо»). Uном. - 3,7V; Литий-железо фосфатные (Li-Fe или LFP). Uном - 3,3V.

Недостатки

Основным недостатком Li-ion аккумуляторов, я бы выделил их пожароопасность из-за превышении напряжения или перегреве. Но, литий-железо-фосфатные аккумуляторы не имеют такого жирного минуса - они полностью пожаробезопасны.
Литиевые аккумуляторы очень чувствительны к холоду и быстро теряют свою ёмкость и перестают заряжаться.
Требуют обязательного наличия контроллера заряда
При глубоком разряде литиевые батареи теряют свои начальные свойства.
Если аккумулятор не будет "работать" продолжительное время, то сначала напряжение на нем упадет до порогового уровня, а затем начнётся глубокий разряди как только напряжение снизится до 2,5V, то это приведет к выходу его из строя. Поэтому время от времени подзаряжаем аккумуляторы ноутбуков, сотовых телефонов, mp3-плееров.

Изобретения и использование инструмента с источниками автономного питания стало одним из визитных карточек нашего времени. Разрабатывается и внедряются всё новые активные компоненты, улучшающие работу батарейных сборок. К сожалению аккумуляторы не могут работать без подзарядки. И если на устройствах, имеющих постоянный доступ электросети вопрос решается встроенными источниками, то для мощных источников питания, например, шуруповерта, необходимо отдельные зарядные устройства для литиевых аккумуляторов с учетом особенности различных типов аккумуляторов.

Последние годы всё активнее используются изделия на литий-ионном активном компоненте. И это вполне понятно, так — как эти источники питания зарекомендовали себя с очень хорошей стороны:

  • у них отсутствует эффект памяти;
  • практически полностью ликвидирован саморазряд;
  • могут работать при минусовых температурах;
  • хорошо удерживают разряд.
  • количество доведен до 700 циклов.

Но, каждый тип батарей имеет свои особенности. Так, литий — ионный компонент требует конструкцию элементарных батареек с напряжением 3, 6В, что требует некоторые индивидуальные особенности для подобных изделий.

Особенности восстановления

При всех достоинствах литий-ионных аккумуляторах у них есть свои недостатки — это возможность внутреннего замыкания элементов при перенапряжении зарядки из — за активные кристаллизации лития в активном компоненте. Также имеется ограничение по минимальному значению напряжения, которое приводит к невозможности приема электронов активным компонентом. Чтобы исключить последствия, батарея оснащается внутренними контроллером, которое разрывает цепь элементов с нагрузкой при достижении критических значений. Хранятся такие элементы лучше всего при зарядке 50 % при +5 — 15° С. Еще одно из особенностей литий-ионных аккумуляторов является то, что время эксплуатации батарейки зависит от времени ее изготовления, вне зависимости от того была ли она в эксплуатации или нет, или другими словами подвержена «эффекту старения», который ограничивает сроком эксплуатации — пять лет.

Зарядка литий — ионных аккумуляторов

Простейшее устройство зарядки одного элемента

Для того чтобы понять более сложные схемы зарядки литий — ионных аккумуляторов, рассмотрим простое зарядное устройство для литиевых аккумуляторов, точнее для одной батарейки.

Основа схемы оставляет управление: микросхема TL 431 (выполняет роль регулируемого стабилитрона) и одном транзисторе обратной проводимости.
Как видно из схемы управляющий электрод TL431 включен в базу транзистора. Настройка аппарата сводится к следующему: нужно на выходе устройства установить напряжение 4,2В — это устанавливается регулировкой стабилитрона подключением на первую ножку сопротивления R4 — R3 номиналом 2,2 кОм и 3 кОм. Эта цепочка отвечает за регулировку выходного напряжения, регулировка напряжения устанавливается только один раз и является стабильной.

Далее регулируется ток заряда, регулировка производится сопротивлением R1 (на схеме номиналом 3Ом) в случае, если эмиттер транзистора будет включён без сопротивления, тогда входное напряжение будет и на клеммах зарядки, то есть — это 5В, что может не соответствовать требованиям.

Так же, в этом случае не будет светиться светодиод, а он сигнализирует об протекании процесса насыщения током. Резистор может быт номиналом от 3 до 8 Ом.
Для быстрой подстройки напряжение на нагрузке, сопротивление R3 можно установить регулируемое (потенциометр). Напряжение настраивается без нагрузки, то есть, без сопротивления элемента, номиналом 4, 2 — 4,5В. После достижения необходимого значения достаточно замерить величину сопротивление переменного резистора и поставить основную деталь нужного номинала вместо него. Если нет необходимого номинала его можно собрать из нескольких штук параллельным или последовательным соединением.

Сопротивление R4 предназначено для открывания базы транзистора, его номинал должен быть 220Ом.При увеличении заряда аккумулятора напряжение будет повышаться, управляющий электрод базы транзистора будет увеличивать переходное сопротивление эмиттер — коллектор, уменьшая ток зарядки.

Транзистор можно использовать КТ819, КТ817 или КТ815, но тогда придется ставить радиатор для охлаждения. Также радиатор будет необходим если токи будут превышать 1000мА. В общем, эта классическая схема простейшая зарядки.

Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов

Когда появляется необходимость зарядить литий ионных батарей, соединенных из нескольких спаянных элементарных ячеек, то лучше всего заряжать ячейки отдельно с применением контрольной схемы, которая будет следить за зарядкой индивидуально каждой отдельной батарейкой. Без этой схемы значительное отклонение характеристик одного элемента в последовательно спаянной батареи приведет к неисправности все аккумуляторы, а сам блок будет даже опасным по причине его возможного перегрева или даже воспламенения.

Зарядное устройство для литиевых аккумуляторов 12 вольт. Устройство балансира

Термин балансировка в электротехнике означает режим зарядки, который производит контроль за каждым отдельным элементом, участвующим в процессе, не допуская увеличения или снижения напряжения менее необходимого уровня. Необходимость подобных решений вытекает из особенностей сборок с li — ion. Если из за внутренней конструкции один из элементов зарядиться быстрее остальных, что очень опасно для состояния остальных элементов, и как следствие всей батареи. Схемное решение балансира выполнена таким образом, что элементы схемы берут на себя избыток энергии, тем самым регулируя процесс зарядки отдельной ячейки.

Если сравнивать принципы зарядки никель-кадмиевых аккумуляторов, то они имеют отличия от литий-ионного, прежде всего у Ca — Ni окончание процесса свидетельствует повышение напряжения полярных электродов и уменьшение тока до 0, 01мА. Также перед зарядкой этот источник должен быть разряжен не менее 30% от первоначальной емкости, если не выдержать это условия в батарее возникает «эффект памяти», который снижает емкость батареи.

С Li-Ion активным компонентом все наоборот. Полная разрядка этих элементов может привести к необратимым последствиям и резко понизить способность заряжаться. Нередко некачественные контроллеры могут не обеспечить контроль за уровнем разрядки батареи, что может привести неисправности всей сборки из-за одной ячейки.

Выходом из ситуации может стать применение выше рассмотренной схемы на регулируемом стабилитроне TL431. Нагрузку 1000 мА или больше может обеспечить установка более мощным транзистором. Такие ячейки подключается к непосредственно к каждой ячейке предохранит от неправильной зарядки.

Выбирать транзистор следует от мощности. Мощность подсчитывается по формуле P = U*I, где U — напряжение, I – зарядный ток.

Например, при токовой зарядки 0,45 А транзистор должен иметь рассеиваемую мощность не менее 3,65 В*0,45А = 1,8 Вт. а это для внутренних переходов большая токовая нагрузка, поэтому выходные транзисторы лучше установить в радиаторы.

Ниже приведен примерный расчет величины резисторов R1 и R2 на различное напряжение заряда:

22,1к + 33к => 4,16 В

15,1к + 22к => 4,20 В

47,1к + 68к => 4,22 В

27,1к + 39к => 4,23 В

39,1к + 56к => 4,24 В

33к + 47к => 4,25 В

Сопротивление R3 – нагрузка на базе транзистора. Его сопротивление может быть 471Ом — 1, 1 кОм.

Но, при реализации этих схемных решений, возникла проблема, как заряжать отдельную ячейку в аккумуляторном блоке? И такое решение нашлось. Если посмотреть на контакты на зарядной ножке, то на выпускаемых в последнее время корпусах с литий-ионными батареями находится такое количество контактов, сколько отдельных ячеек в батарее, естественно, на зарядном устройстве каждый такой элемент подключается отдельный схеме контроллера.

По стоимости подобное зарядное изделие несколько дороже чем линейное устройство с двумя контактами, но это стоит того, особенно если учесть, что сборки с высококачественными литий-ионными компонентами с доходят да половины стоимости самого изделия.

Импульсное зарядное устройство для литиевых li — ion аккумуляторов

Последнее время многие ведущие — фирмы производители ручного инструмента с автономным питанием, широко рекламирует быстро зарядные устройства. Для этих целей были разработаны импульсные преобразователи на основе широтно-импульсно модулированных сигналов (ШИМ) для восстановления блоков питания шуруповертов на основе ШИМ генератора на микросхеме UC3842 собран обратноходовой AS — DS преобразователь c нагрузкой на импульсный трансформатор.

Далее будет рассмотрена работа схема наиболее распространённых источника (см прилагаемую схему) : сетевое напряжение 220В поступает на диодную сборку D1- D4, для этих целей используются любые диоды мощностью до 2A. Сглаживание пульсаций происходит на конденсаторе C1, где концентрируется напряжение порядка 300В. Это напряжение является питанием для импульсного генератора с трансформатором T1 на выходе.

Первоначальное питание для запуска интегральная микросхемы A1 поступает через резистор R1, после чего включается генератор импульсов микросхемы, которая выдает их на вывод 6. Далее импульсы подаются на затвор мощного полевого транзистора VT1 открывая его. Стоковая цепь транзистора подает питание к первичной обмотке импульсного трансформатора Т1. После чего включатся в работу трансформатор и начинается передача импульсов на вторичную обмотку. Импульсы вторичной обмотки 7 — 11 после выпрямления диодом VT6 используется для стабилизации работы микросхемы A1, которая в режиме полной генерации потребляют гораздо больший ток, чем получает по цепи от резистора R1.

В случае неисправности диодов Д6, источник переходит у режиму пульсации, поочередно запуская работу трансформатор и прекращая его, при этом слышен характерный пульсирующий «писк» посмотрим работу схемы в этом режиме.

Питание через R1 и конденсатор C4 запускают генератор микросхемы. После запуска, для нормальной работы требуется более повышенный ток. При неисправности Д6 дополнительного питания на микросхему не поступает, и генерация прекращается, затем процесс повторяется. Если диод Д6 исправен, сразу включает в работу импульсный трансформатор под полную нагрузку. При нормальном запуске генератора на обмотке 14- 18 появляется импульсный ток 12 — 14В (на холостом ходу 15В). После выпрямления диодом V7 и сглаживания импульсов конденсатором C7 и импульсный ток поступает на зажимы батареи.

Ток 100 мА, не вредит активному компоненту, но повышает время восстановления в 3-4 раза, снижая ее время от 30 мин до1 часа. (источник — журнал интернет издание Радиоконструктор 03-2013 )

Быстрозарядное устройство G4-1H RYOBI ONE+ BCL14181H

Импульсное устройство для литиевых аккумуляторов 18 вольт производства немецкой компании Ryobi, производитель народная республика Китай. Импульсное устройство подходит для литий-ионных, никель кадмиевых 18В. Рассчитана на нормальную эксплуатацию при температуре от 0 до 50 С. Схемное решение обеспечивает два режима питания по напряжению и стабилизации по току. Импульсная подача тока обеспечивает оптимальную подпитку каждой отдельной батарейки.

Устройство выполнено в оригинальном корпусе из ударопрочной пластмассы. Применено принудительное охлаждение от встроенного вентилятора, с автоматическим включением при достижении 40° С.

Характеристики:

  • Минимальное время заряда 18В при 1,5 А /ч — 60 минут, вес 0,9 кг, габариты: 210 x 86 x 174 мм. Индикация процесса зарядки подсвечивается синим светодиодом, по окончании загорается красный. Имеется диагностика неисправности, которая загорается при неисправности сборки отдельной подсветкой на корпусе.
  • Питание однофазное 50Гц. 220В. Длина сетевого провода 1,5 метра.

Ремонт зарядной станции

Если случилось так, что изделие перестало выполнять свои функции, лучше всего обратиться в специализированные мастерские, но элементарные неисправности можно устранить своими руками. Что делать если не горит индикатор питания, разберем некоторые простые неисправности на примере станции .

Это изделие предназначено для работы с литий-ионными батареями 12В, 1,8А. Изделие выполнено с понижающим трансформатором, преобразование пониженного переменного тока выполняется четырех диодные мостовую схему. Для сглаживания пульсации установлен электролитический конденсатор. Из индикации имеется светодиоды сетевого питания, начала и окончание насыщения.

Итак, если не горит сетевой индикатор. Прежде всего необходимо через сетевую вилку убедится в целостности цепи первичной обмотки трансформатора. Для этого через штыри вилки подключения сетевого питания нужно прозвонить омметром целостность первичной обмотки трансформатора коснувшись щупами прибора за штыри сетевой вилки, если цепь показывает обрыв, тогда нужно осмотреть детали внутри корпуса.

Возможен обрыв предохранителя, обычно это тоненькая проволочка, протянутая в фарфоровом или стеклянном корпусе, сгорающая при перегрузках. Но некоторые фирмы, например, «Интерскол», для того чтобы предохранить обмотки трансформатора от перегрева устанавливают между витками первичной обмотки тепловой предохранитель, цель которого при достижении температуры 120 — 130° С, разрывать цепь питания сети и, к сожалению, ее уже после разрыва не восстанавливает.

Обычно предохранитель находится под покровной бумажной изоляцией первичной обмотки, после вскрытия которой, можно легко обнаружить эту деталь. Чтобы снова привести схему в рабочее состояние, можно, просто спаять концы обмотки в одно целое, но нужно помнить — трансформатор остается без защиты от короткого замыкания и лучше всего вместо теплового установить обычный сетевой предохранитель.

Если цепь первичной обмотки целая, прозванивается вторичная обмотка и диоды моста. Для прозвонки диодов лучше выпаять один конец из схемы и проверить диод омметром. При подсоединении концов к выводам поочередно щупов в одну сторону, диод должен показывать обрыв, в другую, короткое замыкание.

Таким образом необходимо проверить все четыре диода. И, если, уж, мы залезли в схему, тогда лучше всего сразу поменять конденсатор, потому, что диоды обычно перегружаются по причине высовшего электролита в конденсаторе.

Купить блоки питания для шуруповерта

Любой ручной инструмент и аккумуляторы можно приобрести у нас на сайте. Для этого необходимо пройти простую процедуру регистрации и далее следовать по несложный навигации. Простая навигации сайта легко выведет на необходимый для вас инструмент. На сайте можно посмотреть цены и сравнить их с конкурирующими магазинами. Любой возникший вопрос можно решить с помощью менеджера, позвонив по указанному телефону или оставить вопрос дежурному специалисту. Заходите к нам, и вы не останетесь без выбора необходимого вам инструмента.