Схемы дейдвудных устройств. Вал гребной Нагрузки, действующие на валопровод


Главное назначение валопровода - передавать крутящий момент от главного двигателя гребному винту (движителю), а также воспринимать и передавать корпусу судна упор, создаваемый гребным винтом. Количество валопроводов на судах может быть от одного до трех. На некоторых катерах применяют четырехвальные установки. Для лучшей работы гребного винта валопровод устанавливают с наклоном в корму (до 5°). В трехвальных установках, а иногда и в двухвальных, валы правого и левого бортов могут быть установлены под углом (до 2°) и к диаметральной плоскости судна.

Длина валопровода зависит от размеров судна и места расположения главных двигателей. Валопровод обычно состоит из нескольких частей, жестко соединенных между собой и уложенных на опорные подшипники. Каждая из этих частей в зависимости от назначения имеет свое название.

На рис. 67 показан судовой валопровод, состоящий из упорного вала 17, промежуточных валов 11 и гребного вала 3 с гребным винтом 1. Опорами промежуточных валов служат опорные подшипники 10 и 12, а опорами гребного вала - подшипники (втулки) дейдвудной трубы 6 и кронштейна 2. Дейдвудная труба носовой частью крепится в наварыше 9, а кормовой в мортире 4; ее средняя часть лежит в опорных кольцах 5 и 7. Для обеспечения водонепроницаемости на носовой части дейдвудной трубы установлен дейдвудный сальник 8, а на переборках в местах прохода валопровода - переборочные сальники 16, обеспечивающие водонепроницаемость. Упорный вал 17 соединен с главным двигателем 19 с помощью упорного подшипника 18. В дополнение к нему иногда устанавливают вспомогательный упорный подшипник: 15. Для стопорения вала предусмотрен тормоз 14; в паротурбинных установках для определения мощности, передаваемой на вал, устанавливают торсиометр 13.

Рис. 67. Судовой валопровод.

Гребной вал является концевым валом валопровода и устанавливается в дейдвудной трубе или в специальном кронштейне. Кормовой конец вала, выходящий наружу, выполнен конусным; на него напрессовывают гребной винт. Если предусмотрена установка винта регулируемого шага (ВРШ), то гребной вал вместо конуса имеет фланец для присоединения ступицы ВРШ. Носовой конец гребного вала с помощью муфты соединен с первым промежуточным валом. Соединение гребного и дейдвудного валов часто осуществляют с помощью двух конусов: наружного - на носовом конце гребного вала и внутреннего - в специально утолщенной части кормового конца дейдвудного вала. Установка специальной чеки и плотная посадка конусов обеспечивают совместную работу обоих валов без проворачивания в конусном соединении. Рабочие шейки концевых валов облицованы бронзовыми рубашками, если вал работает во втулках, набранных из планок текстолита или лигнофоля.

Промежуточные валы изготовляются обычно пустотелыми вместе с соединительными фланцами; их соединяют между собой болтами. Каждый промежуточный вал, как правило, лежит на одном опорном подшипнике. Во время монтажа устанавливают так называемый монтажный подшипник. Для опорного и монтажного подшипников на каждом валу предусмотрены шейки, обработанные с большой точностью. Когда в качестве опор применяют роликовые подшипники, то валы имеют съемные муфты для соединения между собой. Это позволяет напрессовать роликовые подшипники на валы.

Назначение опорных подшипников - воспринимать нагрузку от массы валопровода, обеспечивать правильное расположение валопровода но отношению к корпусу судна, а также длительное и надежное вращение валопровода на всех режимах работы главного двигателя. Обычно применяют опорные подшипники скольжения для длинных валопроводов и роликовые подшипники качения для коротких. Валопровод условно считают коротким, если его длина от носовой дейдвудной втулки до кормовой опоры вала двигателя не превышает 22 √d, где d диаметр вала в метрах. Обычно опорный подшипник скольжения имеет литой стальной корпус с горизонтальным разъемом. Нижняя половина корпуса отлита заодно с лапами, которыми подшипник крепится к судовому фундаменту. В нижнюю и верхнюю половину (крышку) корпуса устанавливают вкладыши из двух половин, рабочая поверхность которых залита антифрикционным сплавом. Обе половины подшипника соединяются болтами. Смазка подается в подшипник под давлением. Нагретое масло отводится через отверстия в нижней части корпуса подшипника.

С торцов подшипника устанавливают крышки, имеющие канавки, в которые вставляют фетровые или войлочные полукольца, препятствующие просачиванию масла из подшипника по шейке вала наружу.

Корпус роликового подшипника состоит из двух половин (верхней и нижней), соединенных болтами. В корпусе устанавливается роликовый подшипник. С торцов корпус закрывается крышками с уплотнением. Роликовые двухрядные сферические (самоустанавливающиеся) подшипники выпускаются для валов диаметром до 530 мм, поэтому они в последнее время применяются и для валопроводов с валами большого диаметра. Однако применение таких подшипников ограничено, так как они не имеют разъема. Поэтому их напрессовывают на промежуточный вал (со снятой соединительной муфтой) с торца, что несколько усложняет процесс сборки валопровода. Смазывают подшипники качения обычно консистентными смазками.

Упорный подшипник, как уже отмечалось, воспринимает упор, создаваемый гребным винтом. Существуют различные конструкции главных упорных подшипников. Значительное распространение получили одногребенчатые упорные подшипники (рис. 68). Корпус подшипника отлит из стали и состоит из двух половин - нижней 1 и верхней 12, соединенных по горизонтальному разъему болтами. Сверху корпус закрыт крышкой 10, предназначенной для осмотра подшипника. Крышка закреплена барашками 11. Внутри корпуса расположен упорный вал 8 с упорным гребнем 6, откованным заодно с валом. Заодно с валом откованы также фланцы (на рисунке не показаны) для соединения упорного вала с другими частями валопровода. Вал опирается на бронзовые вкладыши 5, имеющие баббитовую заливку 4. Кольцевые бурты вкладышей, входящие в пазы корпуса подшипника, предохраняют вкладыши от осевого смещения.


Рис. 68. Одногребенчатый упорный подшипник.

С обеих сторон к упорному гребню примыкают упорные подушки (сегменты) 9, расположенные симметрично по его окружности. Каждая подушка со стороны рабочей поверхности залита баббитом, а с обратной стороны в нее плотно запрессованы каленые чечевицы 7. Сферическими поверхностями чечевицы опираются на каленые плоские шайбы 3, в свою очередь запрессованные в полукольца 2, установленные в выточки корпуса. Под полукольца могут быть поставлены прокладки соответствующей толщины, что позволяет регулировать масляный зазор между подушками (сегментами) и упорным гребнем. Для уплотнения упорного вала в местах его выхода из корпуса подшипника предусмотрены крышки с фетровыми или войлочными уплотнительными кольцами, устанавливаемыми в пазах крышек.

Масло к упорному подшипнику поступает под давлением через дроссельный клапан. Охлаждение масла производится с помощью змеевика, расположенного в нижней части корпуса подшипника. Для контроля за режимом смазки в подшипнике предусмотрены термометр, манометр и указатель уровня масла.

Тормоз валопровода предназначен для стопорения валопровода на ходу судна в случае необходимости - например, для устранения повреждений самого валопровода или главного двигателя. Чаще всего применяют тормоз бугельного типа. Он состоит из опорной плиты, укрепленной на судовом фундаменте, и двух тормозных скоб, нижними концами шарнирно соединенных с плитой; внутренняя поверхность скоб облицована лентами из фрикционного материала. Верхняя часть скоб стянута двумя стержнями и обеспечивает плотное прижатие фрикционных лент (скоб) к тормозному фланцу вала валопровода. При нормальной работе валопровода тормозные скобы находятся в отжатом состоянии.

Соединение промежуточных валов между собой, а также промежуточного вала с дейдвудным валом может осуществляться при помощи обычного фланцевого соединения, выполненного заодно с валом; иногда применяют специальные шпоночные муфты, насаженные на концы валов, или бесшпоночные муфты и полумуфты, напрессованные на концы валов гидропрессовым способом. Вал двигателя с валопроводом часто соединяют специальными муфтами: фрикционными, гидравлическими, электромагнитными и шинно-пневматическими.

Переборочные сальники устанавливают в местах прохода промежуточных валов через водонепроницаемые переборки. Они предотвращают проникновение воды из одного отсека судна в другой. Переборочный сальник состоит из корпуса, который крепят на шпильках к приварышу - стальному кольцу, приваренному к переборке. В корпусе переборочного сальника устанавливают грундбуксу и нажимную втулку, а также просаленную пеньковую набивку. Последняя уплотняется нажимным кольцом путем поджатия гаек шпилек, на которых установлен сальник.

Дейдвудное устройство является одним из основных элементов валопровода. Простейшее дейдвудное устройство состоит из трубы с фланцем. В трубу запрессованы втулки с вкладышами. Носовой конец дейдвудной трубы уплотнен дейдвудным сальником. Носовой фланец дейдвудной трубы крепится к стальному приварышу кормовой водонепроницаемой переборки. На кормовом фланце трубы имеется кольцевой выступ, которым он упирается в торец ахтерштевня (или мортиры) и закрепляется снаружи гайкой. Бронзовые втулки, запрессованные внутрь трубы с ее носового и кормового концов, являются подшипниками гребного или дейдвудного вала. Эти втулки могут состоять из двух половин. Кормовая втулка закреплена фланцем на торце дейдвудной трубы; обе втулки упираются в ее внутренние заплечики. Внутри втулок закреплены подшипники, набранные из планок твердой древесины - бакаута. В настоящее время вместо дорогостоящего бакаута иногда применяют вкладыши из древеснослоистого пластика, лигнофоля (пропитанного смолами и спрессованного в горячем состоянии фанерного шпона), текстолита (слоистого пластика, полученного в результате прессования ткани, пропитанной смолами) или специальных резинометаллических планок из водостойкой твердой резины, закрепленных во втулке винтами. В таких подшипниках сама вода является смазочным материалом. Набивку сальника в таких дейдвудных устройствах выполняют из просаленной и прографиченной пеньки специального прядения. В настоящее время внедряются более совершенные дейдвудные устройства с уплотнениями новых типов. Так, оправдало себя уплотнение типа «симплекс», выполняемое в виде манжет из специальной профилированной резины. Оно обеспечивает настолько надежную герметизацию дейдвудной трубы, что удается применить смазку подшипников дейдвуда минеральным маслом под давлением и обеспечить более надежную работу вала в районе подшипников. В этом случае и сами подшипники имеют иную конструкцию; в них применяются металлические антифрикционные материалы.

Модуль 2.1

2.1.1. Судовой валопровод: назначение, состав и основные элементы

Валопровод предназначен для передачи вращающего момента ГД движителю, восприятия осевой силы и передачи ее корпусу судна с целью обеспечения его движения. От надежной работы валопровода зависит эффективность и безопасность эксплуатации судна (особенно одновинтового).

Состав валопровода, его длина и число валовых линий об­условлены: типом, мощностью и расположением ЭУ; требова­ниями, предъявляемыми к ЭУ (надежность, маневренность и пр.); условиями размещения, обслуживания, проведения монтажных и ремонтных работ.

В состав валопровода входят следующие элементы: валы и их соединения, опорные и упорные подшипники, дейдвудные устрой­ства и переборочные уплотнения, специальные устройства и меха­низмы, вспомогательное оборудование. При этом, если отдельные элементы (например, упорный подшипник с упорным валом и пр.) встроены в ГД, они в состав валопровода не включаются.

На рис. 2.1.1, а и б дана схема расположения валопровода одно- и двухвальных СЭУ. На кормовом конце гребного вала закреплен гребной винт. На выходе из корпуса судна установлено дейдвудное устройство, состоящее из дейдвудной трубы, жестко соединен­ной с корпусом, опорных подшипников и сальниковых уплотнений. Оно препятствует попаданию забортной воды в машинное отделение (МО) или в коридор гребного вала.

Длина гребного вала может достигать 30 м. Поскольку по ус­ловиям металлургического производства невозможно изготовить цельную заготовку такой длины, ее делят примерно на две равные части. Носовая часть, проходящая через дейдвудную трубу, на­зывается дейдвудным валом, а кормовая - гребным валом. Такое сочетание валов характерно для двухвальпых судов с острыми обводами кормовой оконечности. В этом случае кормовая часть дейдвудной трубы заканчивается короткой втулкой - мортирой, в которой размещен опорный подшипник для дейдвудного вала; гребной вал опирается на подшипник кронштейна.

Гребной и упорный валы соединяются посредством промежу­точных валов. При выборе их длины для конкретного судна не­обходимо учитывать следующее: удобство проведения погрузочно-разгрузочных, сборочных и демонтажных работ; местоположение опорных подшипников; унификацию заготовок валов, технико-эко­номическую целесообразность изготовления заготовок и обра­ботки валов; данные расчета центровки валопровода.

На судах также применяют валопроводы с одним промежуточ­ным валом (кормовое расположение МО) или без него (малые суда, катера). Промежуточные валы опираются на один или два опорных подшипника. Если вал опирается на один подшипник, то для проведения монтажных работ применяют монтажный под­шипник.

Рис. 2.1.1. Схема расположения валопровода СЭУ:

а - одновальной:

1 - гребной винт; 2 - дейдвудное устройство;

3 - гребной вал; 4 - тормозное устройство; 5, 7 - кормовой и промежуточный опорные подшипники; 6 - промежуточный вал;

8 - переборочное уплотнение; 9 - проставочный вал; 10 - монтажный подшипник; 11 - валоповоротное устройство; 12 - ГУП; 13 - ГД;

б - двухвальной:

1 - гребной винт; 2 - кронштейн; 3 - гребной вал; 4 - глухое коническое соединение; 5 - мортира; б, 8 - кормовой и носовой подшипники дейдвудного вала; 7 - дейдвудная труба; 9 - дейдвудный сальник; 10 - дейдвудный вал; 11 - соединительная полумуфта;

12 - тормозное устройство; 13 - монтажный подшипник;

14 - промежуточный вал (ВУВ); 15 - опорно-упорный подшипник;

16 - линия вала левого борта; 17 - быстроразъемное соединение;

18 - проставочный вал; 19 - переборочное уплотнение; 20 - ГУП;

21 - ГД; 22 - торсиометр.

Упорный вал соединяется с промежуточными валами через фланец одного из валов, изготовленный с припуском (обрабаты­вается по замерам на месте), или через проставочный вал. Такое соединение позволяет компенсировать неточности корпусных кон­струкций, облегчить монтажные и ремонтные работы, унифициро­вать заготовки промежуточных валов. Кроме того, проставочный вал проектируют как слабое звено, которое может выйти из строя при ударе гребного винта о лед или в другом случае перегрузки валопровода.

Упорный вал предназначен для восприятия реакции упора двигателя и передачи ее корпусу судна через ГУП. В зависимости от принятой схемы ГУП может быть встроен в ГД, в редуктор или размещен в отдельном корпусе.

В многовальных установках быстроходных судов кормовые опорные подшипники промежуточных валов выполняют в виде опорно-упорных. В этом случае вал называется вспомогательным упорным (ВУВ). При нормальной эксплуатации работают опор­ные части подшипника, а при аварии - упорные (например, в случае поломки одного из ГД). Для возможности движения судна при работе остальных ГД с жесткой передачей и с целью снижения потерь в подшипниках валопровода предусмотрено раз­общение валопровода от движителя через быстроразъемиое со­единение.

Упорные подушки ВУВ имеют значительно меньшую поверх­ность, так как воспринимают реакцию нагрузки свободно вращаю­щегося винта. Поэтому во избежание подплавления при нормаль­ной эксплуатации эти подушки должны быть отведены от упор­ного гребня на 10-20 мм с помощью червячной передачи, смонтированной на корпусе подшипника.

Самым коротким валопровод будет при кормовом расположе­нии МО, либо при центральном или носовом расположении - в случае использования электрической передачи. При любом другом расположении МО и других типах передач длина валопровода может достигать 90-100 м. В этих случаях валопровод прокладывают через грузовые помещения в водонепроницаемом туннеле от кормовой переборки МО до носовой переборки ахтерпика. Туннель защищает валопровод от возможных повреждений при проведении грузовых работ, однако уменьшает полезный объем судна и создает неудобства при выполнении грузовых работ.

Габариты туннеля (коридора гребного вала) должны быть достаточными для обслуживания и проведения монтажных и ремонтных работ (свободный проход между поручнями и перебор­кой туннеля не должен быть меньше 500 мм). В местах выхода валопровода через кормовую переборку МО, а также через другие водонепроницаемые переборки ставят переборочные водонепро­ницаемые сальники. Отсеки отделяют водонепроницаемыми дверями, которые закрываются со стороны МО. Для безопасного обслуживания вращающегося валопровода его ограждают поруч­нями. Коридор оборудуют двумя выходами - один в МО, другой в районе дейдвудной трубы через специальную вертикальную шахту на верхнюю палубу.

Вал гребной , представляет один или несколько соединенных в одну линию валов, передающих движение от паровой машины, турбины или другого судового двигателя к гребному винту или гребным колесам (см.).

Линия Вала большого военного судна состоит из следующих главных частей: коленчатый Вал машины или шпинделя паровой турбины, промежуточные Валы, упорный Вал, дейдвудный Вал и, наконец, гребной или концевой Вал.

Иногда некоторые из перечисленных частей (например, дейдвудный Вал и концевой) соединяются в один общий Вал, а при короткой линии отсутствуют промежуточные Валы.

Каждая из частей Вала имеет специальное назначение и к каждой из них предъявляются свои требования.

I. Коленчатый Вал составляет неотъемлемую часть паровой машины, на которую передается работа цилиндров.

В многоцилиндровых машинах он состоит обыкновенно из нескольких кусков, соединенных между собою фланцевыми муфтами. Каждый кусок вала имеет одно, два или три колена и отковывается для судовых машин военного флота в целом виде.

Для облегчения веса, коленчатый Вал делается пустотелыми; отношение диаметра внутреннего высверленного отверстия к диаметру Вала обыкновенно берется равным половине.

Во избежание продолжительного вывода корабля из строя в случае поломки коленчатого Вала, при самой постройке судна заготовляется запасная часть этого Вала, и все его части конструируются по возможности взаимозаменяемыми.

Исключение делается для машин большой мощности, у которых поломки Вала, изготовляемых при современном состоянии техники, бывают крайне редки.

Шейки Вала вращаются в рамовых подшипниках машины, пушечного металла, залитых антифрикционным металлом, шейку же мотыля обхватывает подшипник нижней головки шатуна той же конструкции. Принимая на себя все удары от сил инерции движущихся масс паровой машины и составляя существеннейшую часть последней, коленчатый Вал требует при проектировании самого внимательного расчета. Для расчета коленчатого Вала существует ряд эмпирических формул; таковы, например, формулы английского Ллойда и бюро Веритас, приводимые в справочных изданиях и специальных технических источниках.

В этих формулах диаметр Вала определяется в зависимости от числа и величины цилиндров машины, длины хода поршня, давления пара в котлах и некоторых других данных, характеризующих мощность машины. Хотя практические формулы и дают хорошие результаты, но необходимо точно проверить коленчатый Вал на сложный крутящий и изгибающий моменты по теоретической формуле:

где: d - диаметр Вала в дм., f - допускаемое напряжение материала в английском фн. на кв. дм., T1 - крутящий момент и M - изгибающий момент.

Все напряжения в материале, как для изгиба и кручения Вала, так на смятие и работу трения в подшипниках, в виду особо тщательного изготовления всех этих частей и стремления облегчить вес механизмов, принимаются при проектировании машин военного флота гораздо большими, чем для судов коммерческого флота.

В паровых турбинах коленчатый Вал отсутствует, - его заменяют, так. наз., шпинделя роторов турбин.

I. Промежуточный Вал служит для соединения коленчатого Вала машины или шпинделя паровой турбины с упорным или дейдвудным Валом. Промежуточный Вал также избегают делать длинными, дабы их можно было вынуть из машинного отделения, не снимая громоздких частей механизмов. Поэтому часто промежуточных Валов бывает несколько; они покоятся на промежуточных подшипниках, иногда называемых "коридорными", вследствие нахождения их в коридоре гребного Вала.

Так как промежуточный Вал не подвергаются ударам и хорошо поддерживаются промежуточными подшипниками, то диаметр их рассчитывается только на кручение и делается обыкновенно меньшего, чем другие Валы того же судна, размера.

Подшипники делаются подобно рамовым при турбинных и быстроходных вообще установках, или же просто чугунными, залитыми антифрикционным металлом в своей нижней половине.

На промежуточном Вале или на фланце коленчатого устанавливается червячное колесо поворотного привода, служащего для проворачивания вручную всей линии Вала во время бездействия машин. Вал полагается проворачивать в кампании ежедневно.

Упорный Вал, это один из промежуточных Валов, только с особым назначением. Он несет на себе несколько колец, составляющих одно целое с телом Вала и входящих в соответствующие впадины упорного подшипника.

Эти кольца воспринимают упорное давление винта, сообщающее движение судну (см. Винт гребной).

Число колец рассчитывается так, чтобы дать достаточную поверхность для воспринятия упорного давления, не прибегая к чрезмерному увеличению диаметра колец.

Необходимые требования:

1) точная пригонка колец упорного Вала к кольцам упорного подшипника, дабы давление воспринималось всеми кольцами одновременно и

2) правильное расположение поддерживающих Вала промежуточных подшипников, дабы избежать его провеса, нарушающего правильную работу упорных колец.

Упорные подшипники, принятые в нашем флоте, в большинстве случаев бывают системы Модзлея со съёмными подковообразными кольцами, для облегчения пригонки их и ремонта; но в небольших установках применяются и подшипники обыкновенного закрытого типа с впадинами для колец упорного Вала. Недостаток последних - недоступность для осмотра во время работы и трудность пригонки.

Корпус упорного подшипника делается обыкновенно чугунный или литой стали.

Подковообразные скобы - пушечного металла, пустотелые, чугунные или литые стальные; в последних двух случаях они обязательно облицовываются антифрикционным металлом, кроме того, делается всегда охлаждение колец водой. Судовой фундамент под упорный подшипник делается, возможно, жестким и соединяется надлежащим образом с корпусом судна. В турбинных установках упорные подшипники находятся непосредственно у самых турбин и потому специальных упорных Валов для них не требуется; но для разобщения линии Вала от турбин на одном из промежуточных Валов делают специальное кольцо и подшипник для него, который удерживает Вал в надлежащем положении при свободном вращении его от хода судна после разобщения этого Вала от турбин.

Одно кольцо сравнительного малого диаметра оказывается в этом случае достаточным в виду того, что Вал никакой работы не передает и лишь свободно вращается.

III. Дейдвудный Вал проходит через корпус судна в т. наз. дейдвудной трубе (см.) и на всей длине бакаутовой набивки этой трубы облицовывается насаженными на него в горячем состоянии втулками пушечного металла, во избежание ржавления, т. к. ему приходится работать с водяной смазкой; если же дейдвудная труба делается со специальной нагнетательной смазкой, то Вал не облицовывается.

Часть Вала между облицовками покрывается или специальным каучуковым составом (Виллениуса), предохраняющим эту часть от разъедания, или медью. При установке на судно дейдвудные Валы вводят через дейдвудную трубу, отверстие которой слишком мало для прохода фланца; поэтому муфта Вала делается насадной в горячем состоянии или со специальным кольцом на шпонках.

К внутреннему концу дейдвудного Вала обыкновенно приспособляют тормоз, на случай необходимости остановить Вал во время хода судна, например, для разобщения или сообщения линии Вала с двигателем.

IV. Концевой Вал, - последняя, кормовая часть линии Вала, одним фланцем соединяющаяся с дейдвудный Вал; на другой, конический конец этого Вала насаживается гребной винт, укрепляемый шпонками и гайкой, навинченной на нарезанный конец Вала.

У самого винта концевой Вал поддерживается наружным кронштейном, прикрепленным к корпусу судна и снабженным, подобно дейдвудной трубе, втулкой с бакаутовым набивкой, почему часть Вала, входящая в эту втулку, также облицовывается пушечным металлом.

Концевой Вал, как и коленчатый Вал, рассчитывается на сложный крутящий и изгибающий моменты в виду того, что он обыкновенно делается значительной длины и, как наружная часть, легко подвергается ударам.

В турбинных установках, где в виду большого числа оборотов гребных винтов, концевой Вал бывают сравнительного малого диаметра при значительной длине, они проверяются еще подсчетом на возможность разрушения от центробежной силы, на так называемое "критическое число оборотов".

При недостаточном диаметре может получиться провес вала и его поломка, как результат развившейся с возрастанием числа оборотов центробежной силы.

Как концевой Вал, так и дейдвудный делаются в настоящее время пустотелыми; отверстия Вала заделываются плотно пробками на резьбе.

При изготовлении всей линии Вала обращается самое серьезное внимание на качество стали и на их выделку. Требуется, чтобы площадь сечения болванки была, по крайней мере, в 5 раз больше площади сечения готовой отковки. При испытании пробных планок сталь должна давать сопротивление на разрыв от 27 до 30 тн. на 1 кв. дм. и удлинение свыше 30% на 2 дм. длины.

После проковки Вала тщательно отжигаются, при обточке в металле не допускается никаких пороков; диаметр Вала по всей длине его д. быть один и тот же, а высверленное отверстие вполне концентрично с наружной окружностью Вала. Фланцы Вала д. быть строго перпендикулярны к его оси.

При сборке Валов на судне и во время их службы обращается самое серьезное внимание на то, чтобы вся линия Вала была строго прямая и Валы лежали плотно на своих подшипниках.

Двигатель устанавливается на фундамент, представляющий собой систему продольных и поперечных балок, надежно прикрепленных к набору судна. С одним из вариантов такой конструкции, рассчитанной на установку двигателя весом до 350 кг, можно ознакомиться по чертежам катера «Суперкосатка» (см. стр. 187). Конструкция этого фундамента предназначена для размещения двигателя в корме, у самого транца судна. Такая планировка привлекательна тем, что механическая установка, во-первых, занимает минимум полезного места, а во-вторых, в пассажирском помещении в меньшей степени ощущаются и шум от ее работы, и запах бензина и масла. Плохо то, что в этом случае никак не обойтись без реверсредуктора или угловой колонки, приобрести которые в настоящее время можно только случайно, а изготовить самим довольно сложно. С простейши ми конструкциями этих устройств мы познакомимся ниже, а сейчас рассмотрим более доступный для любительского исполнения вариант крепления двигателя, при котором гребной вал соединен с двигателем напрямую.

С конкретной конструкцией фундамента можно ознакомиться по чертежам катера «Тюлень» (см. стр. 196). Фундамент этого катера принципиально не отличается от фундамента катера «Суперкосатка». Наибольшее применение прямое соединение двигателя с гребным валом находит на водоизмещающих катерах и яхтах. На судах этого типа двигатель располагается на уровне ватерлинии либо даже ниже ее. Гребной вал благодаря этому можно установить горизонтально либо с незначительным уклоном в корму и пропустить прямо через ахтерштевень. Не представляет трудности выбрать и место для двигателя: его можно расположить в любой точке по длине судна, сообразуясь с требованиями планировки помещений и центровки.

Другое дело, если речь идет о глиссирующем судне. Чтобы не слишком смещать двигатель в нос (это неприемлемо по условиям центровки), приходится устанавливать гребной вал с изломом в вертикальной плоскости. Такие изломы могут быть выполнены либо с помощью упругих муфт, либо за счет шарниров Гука. Эффективная работа таких соединений обеспечивается при изломе на угол, не превышающий 5-7°. Если требуется изогнуть вал под большим углом, приходится ставить два шарнира и больше.

Монтаж валопровода во всех случаях представляет собой ответственную задачу. Имеет смысл разобраться в этом поподробнее. Предварительно, однако, следует остановиться на некоторых деталях валопровода.

Одной из основных деталей валопровода является гребной вал, опорами которого служат резинометаллическая втулка (подшипник) кронштейна и упорно-опорный подшипник, установленный в месте соединения вала с двигателем или редуктором.

Резинометаллический подшипник, работающий на водяной смазке„ имеет несложную конструкцию и может быть изготовлен с помощью приспособления, показанного на рис. 148. Сначала вытачивается латунная, стальная или бронзовая втулка 3 подшипника. Внутрь ее вваривается резина 5. Для более надежного сцепления резины с металлом на втулке нужно просверлить с десяток отверстий диаметром 4 мм и раззенковать их с наружной стороны.

Для осуществления вулканизации резины нужно изготовить приспособление, которое состоит из втулки 2, предотвращающей распира-ние корпуса подшипника в момент запрессовы-вания сырой резины, донышка 4, закрывающего

подшипник снизу, и плунжера / для запрессовыва-ния резины. Сырую резину, обычно применяемую для ремонта автомобильных шин, нужно нарезать кусочками примерно 20x20 мм и набить ими втулку 3, так чтобы они немного выступали сверху. Затем втулку помещают в приспособление, которое ставят под пресс. Постепенно увеличивая давление, добиваются того, что резина заполняет все пустоты, после чего устройство ставят на варочную плиту и выдерживают на ней не менее 2,5 час. Втулка 3 должна целиком заполниться резиной. Теперь остается просверлить в ней отверстие под гребной вал, диаметром на 2 мм меньше диаметра вала. Вдоль отверстия прорезают четыре продольные канавки треугольного сечения для подтока смазывающей воды к валу.

Очень удобен для монтажа кронштейн с регулируемым наклоном оси гребного вала по отношению к днищу катера (рис. 149). Такая конструкция дает возможность точно отцентровать вал, не прибегая к клиновым прокладкам под лапы двигателя, изготовление которых требует точных фрезерных или строгальных работ. При монтаже кронштейна его основание / сначала крепят на один винт 3, относительно которого шпора 4 имеет возможность поворачиваться на некоторый угол - до точного совпадения отверстия подшипника с гребным валом. Затем ставят винты 2, просверливая отверстия для них в шпоре 4 на месте. Шпору от смещения во время эксплуатации катера предохраняет штифт 5.

Дейдвудные сальник и труба могут быть выполнены по-разному. На рис. 150, например, показана конструкция, состоящая из самоподжимного сальника 5 (рис. 151), эластично, с помощью дюритовой муфты, прикрепленного к металлическому кожуху вала, который монтируется на днище. За счет дюритового соединения компенсируются неточности монтажа вала.

Диаметр d гребного вала выбирается в зависимости от мощности N двигателя, числа его оборотов п и коэффициента В, характеризующего прочность металла на скручивание (для углеродистой стали В = 82, для легированной - 69), по формуле

Наибольший допустимый пролет гребного вала между опорами определяется в зависимости от его диаметра по формуле

При большей длине пролета необходимо устанавливать дополнительные опорные подшипники.

Для установки двигателя сначала необходимо сделать эскиз его расположения, положения вала и подшипников, по эскизу отметить точку выхода гребного вала на киле или на ахтерштевне и в этой точке просверлить центровочное отверстие под дейдвудную трубу. Чтобы не ошибиться в направлении, следует, пользуясь сделанным эскизом, прикрепить к килю кронштейн-кондуктор / (рис. 152, а) с отверстием для сверла 2. Если сверлить киль 3 придется под очень острым углом, лучше сде-

Рис. 152. Приспособление для сверления отверстия под дейдвудную трубу: а - кронштейн-кондуктор; б - расточка.

1 - направляющие крокштенн-конд! и.гор, 2 - сверло. 3 - киль с вырубкой, 4 - направляющий стержень, 5 - резец, 6"- стопорный винт.

лать в нем вырубку с таким расчетом, чтобы сверло входило в древесину под прямым углом.

Для рассверливания на полный размер используются либо специальные расточки (рис. 152, б) с направляющим стержнем по диаметру центрового отверстия, либо надетая на сверло фреза, либо труба с заточенными по торцу зубцами. Отверстие под трубу большого диаметра приходится растачивать за два и за три раза, соответственно применяя расточки все большего диаметра.

Имеется два способа монтажа гребного вала. Первый, наиболее простой, заключается в следующем. В соответствии с эскизом, по возможности точнее, устанавливается дейдвудная труба. Она и задает направление оси гребного вала. В трубу вставляется втулка опорного подшипника и дейдвудный сальник, которые и будут в дальнейшем строго фиксировать положение гребного вала.

На вставленный в дейдвудную трубу вал надевают по очереди кронштейн, опорный и упорный подшипники, следя за тем, чтобы не было провеса. Затем с использованием прокладок крепят кронштейн и подшипники так, чтобы вал легко проворачивался вручную. На балках фундамента размечают места крепления угольников под опоры двигателя. Рама двигателя должна иметь возможность перемещаться по угольникам в пределах, обеспечивающих центровку.

Соосность гребного вала и выходного вала двигателя проверяют при помощи стрелок (рис. 153, а), укрепленных на фланцах обоих

Рис. 153. Определение неточности установки гребного вала; а - смещение осей; б - излом линии вала.

валов. Сначала фланцы поворачивают так, чтобы стрелки вверху оказались на одном уровне, затем оба вала поворачивают на 180° и замеряют расстояние h между стрелками в этом положении по высоте. Замеренное расстояние и будет показывать смещение валов по вертикали, которое устраняется путем установки прокладок под лапы двигателей. Подобным же образом замеряется горизонтальное смещение / валов, которое устраняется перемещением двигателя поперек фундаментных угольников.

Теперь остается устранить возможный излом линии вала. Для этого устанавливают на одном уровне стрелки, замеряют расстояние 1г между их концами (рис. 153, б) и поворачивают валы за фланцы на 180°. Замеряют расстояние /2 между концами стрелок. Если расстояния окажутся разными, то это будет означать, что линия вала имеет излом. Излом устраняют перемещением двигателя.

Рассмотрим монтаж двигателя. Наметив отверстия в угольниках фундамента, снимают двигатель и просверливают эти отверстия. Устанавливая двигатель на свое место, надо не забыть положить все подрамные прокладки.

Поставив гайки на все болты, постепенно затягивают их, проворачивая вал и следя за тем, чтобы его не заедало.

Другим, более точным способом монтаж гребного вала осуществляется с помощью струны, которая, будучи натянутой по линии вала, определит положение его опор (рис. 154). Практически работа выполняется в следующем порядке. В отверстие под дейдвудную трубу вставляется деревянная втулка, к которой снаружи прикрепляется металлическая пластинка (дейдвудная мишенька) с центровочным отверстием диаметром 3 мм, которое является первой контрольной точкой. По эскизу находится вторая контрольная точка - на носовой переборке 7 машинного отделения либо на временно установленной доске. В этой точке также крепится металлическая пластинка (монтажная мишенька) с отверстием 1 мм. Для определения места крепления кронштейна гребного вала нужно установить еще одну мишеньку (мишеньку /) в самой кормовой части корпуса - на транце или ахтерштевне. В отличие от двух пречыду-


щих, эта мишенька подвижная, она представляет собой тонкую металлическую пластинку с миллиметровым отверстием в центре и четырьмя отверстиями по углам для крепления гвоздиками по месту. Устанавливается эта мишенька при помощи монтажного щита 2, который крепится на транце так, чтобы плоскость его была перпендикулярна оси вала. В месте установки мишеньки в щите выпиливается отверстие диаметром 75 мм.

Струну пропускают через отверстие в подвижной мишеньке и в кормовом щите, а чтобы она не выскакивала, на конце ее привязывают гвоздь. Далее струна протягивается через кронштейн с вставленным в него макетным валиком (рис. 155), дейдвуд и носовую мишеньку. За переборкой машинного отделения струна перебрасывается через установленный здесь блок 8 и натягивается с помощью привязанного к ее концу груза 9. Передвигая кормовую мишеньку /, нужно установить струну так, чтобы она не касалась краев отверстия дейдвудной мишеньки 4. После этого кормовую мишеньку необходимо прикрепить к щиту гвоздиками.

После того как линия вала будет обозначена струной, остается установить промежуточные мишеньки всех центрируемых частей вала и закрепить их.

Для установки кронштейна гребного вала необходимо сделать из твердого дерева макетный валик 3 в размер втулки кронштейна, в центре валика просверлить отверстие диаметром 3 мм под струну (чтобы заводить струну в отверстие, можно прорезать валик, как показано на рис. 155). Сдвигая кронштейн, добиваются того, чтобы струна проходила через отверстие в макетном валике с одинаковым радиальным зазором. После этого кронштейн крепят к корпусу окончательно, подложив под его опоры пропитанную суриком парусину или, если надо, прострогав обшивку (прокладка нужна и в этом случае).

Аналогичным образом, с помощью макетного валика, устанавливается и дейдвудная труба. Рассверливать отверстия для нее в киле до окончательного размера лучше не сразу, а после предварительной центровки по струне. Вначале же можно сделать отверстие диаметром на 5- 10 мм меньше, это даст возможность при центровке сдвигать трубу в любом радиальном направлении в пределах допусков. Сначала центровку ведут с помощью макетного валика. Надев валик на натянутую струну, рассверливают по его размерам киль или ахтерштевень. Затем на валик надевают дейдвудную трубу. Фланец трубы подгоняют рубанком по месту к корпусу судна.

Отцентрованная дейдвудная труба сначала прикрепляется шурупами. Затем по имеющимся отверстиям в дейдвудной плите просверливают во фланце отверстия для болтов. Болты перед постановкой обматывают паклей, обмазывают суриком и затягивают в порядке, указанном на рис. 156.

Центровка подшипников также проводится по мишенькам, с помощью макетных валиков.

Центровку самого двигателя удобнее производить до его установки в корпус, при помощи фундаментной рамы. Делается это так. На собранный из двух продольных (углового сечения, например) и нескольких поперечных балок фундаментной раме монтируют двигатель. К концевым поперечным балкам фундаментной рамы крепят фанерные щитки с наклеенными листами ватмана на сторонах, обращенных к двигателю. К храповику и маховику двигателя прочно привязывают карандаши, которые при проворачивании вала двигателя вычерчивают на ватмане окружности.

Снимают двигатель с фундаментной рамы, а саму фундаментную раму ставят на место в корпус судна. Находят центры окружностей на листах и сверлят по ним отверстия диаме-

Монтаж гребного вала следует вести от кронштейна к двигателю. Вал нужно при этом постоянно проворачивать, одновременно производя затяжку болтов на соединительных фланцах.

При использовании шарнирных соединений монтаж вала упрощается. В этом случае достаточно только наметить линию вала. Двигатель устанавливается по шарниру. Для этого он вместе с фундаментной рамой ставится на место, но не крепится, а подвешивается на талях, чтобы его можно было легко перемещать в любом направлении. Затем монтируется шарнир, соединяющий гребной вал с валом двигателя (нужно, чтобы опорный подшипник гребного вала был расположен возможно ближе к фланцу, на котором крепится шарнир). Теперь остается расклинить двигатель прокладками и отдать тали. Если после этого двигатель и гребной вал будут легко прокручиваться, их закрепляют окончательно. В противном случае центровку нужно будет повторить.

1 - обтекатель; 2 - лопасть гребного винта; 3 - ступица гребного винта; 4 - кронштейн; 5 - гребной вал; 6 - дейдвудное устройство; 7 - промежуточный вал; 8 - опорный под­шипник; 9 - тормоз; 10 - упорный подшипник; 11 - упорный вал; 12 - вал главного двигателя.

Основными элементами валопровода являются:

Гребной вал;

Промежуточные валы;

Главный упорный подшипник;

Опорные подшипники;

Дейдвудное устройство.

ДЕЙДВУДНЫе ТРУБы И ОБЛИЦОВКи

В качестве дейдвудных подшипников применяют подшипники скольжения с водяной или масляной смазкой, устанавливаемые в дейдвудной трубе. Дейдвудная труба крепится носовым концом к последней ахтерпиковой переборке, а другим - к кормовой оконечности корпуса, например в отверстии мортиры.

В настоящее время в судостроении широко применяют два конструктивных типа неметаллических подшипников с охлаждением и смазкой водой: наборные из отдельных вкладышей и монолитные в виде цилиндрических втулок.

Для изготовления втулок дейдвудных подшипников, работающих в морской воде, используют коррозионно-стойкие материалы: латуни ЛЦ40Мц1,5, ЛЦ40МцЗЖ, ЛЦ16К4, бронзы БрА9Мц2Л, БрОЮЦ2 и ряд других латуней и бронз. В качестве антифрикционного материала для вкладышей неметаллических подшипников применяют бакаут, текстолит, резину, ДСП, полиамиды; для металлических подшипников - баббит. Характеристики неметаллических материалов приведены в табл. 6.2. Бакаутом называют древесину гваякового (железного) дерева.

Судовые движители.

Движителем наз. такое судовое устройство, которое, используя работу двигателя, создает в воде упор – силу, способную двигать судно в заданном направлении.

Движители делятся на:

Лопастные - гребные винты, крыльчатые движители, гребные колеса;

Водометные.

Гребной винт (рис.7) имеет от 3 до 6 лопастей, установленных радиально на ступице. Поверхности лопастей, обращенные в нос судна наз. засасывающими , обращенные в корму-нагнетающими. Различают винты правого и левого вращения. Для повышения эффективности гребных винтов применяют направляющие насадки и пропульсивные наделки на руль. Направляющие насадки бывают неподвижными и поворотными, применяются на больших и малых судах. Пропульсивная наделка на руль упорядочивает поток воды за ступицей и повышает КПД винта, а также улучшает условия руля.

Рис.7 Винт

Винт регулируемого шага (ВРШ) имеет лопасти, поворачивающиеся вокруг их вертикальной оси. Их можно устанавливать под любым углом, образуя шаг,необходимый для данного режима работы судна. ВРШ позволяет не только использовать двигатель судна в разных условиях эксплуатации, но и удерживать его на месте, не выключая двигатель.

Рис. 10. Винт регулируемого шага ,

/ - ползун; 2-шатун; 3 - кривошипный диск; 4 - шток; 5-поршень! 6-золотниковый регулятор; 7 -привод управления; 8 - масляный насос; 9 - электродвигатель; 10 - масляная цистерна.

По способу соединения лопастей со ступицей различают гребные винты цельные и со съемными лопастями. Широкое распространение получили гребные винты регулируемого шага (ВРШ), у которых шаг лопастей можно изменять путем их поворота на ходу судна. Число лопастей гребных винтов современных транспортных судов изменяется в пределах от трех до шести, редко - более.

Диаметр гребных винтов современных судов большого водоизмещения достигает 10 м и более.

Крыльчатый движитель представляет собой диск, вмонтированный заподлицо с днищевой обшивкой и приводящийся во вращение вокруг вертикальной оси судовым двигателем. По окружности диска перпендикулярно к нему расположены 4-8 погруженных в воду лопастей, каждая из которых вращается вместе с диском, а также вокруг своей оси.

Водометные движители

Водометный катер «Мурена»

На катере предусмотрена установка одноступенчатого водометного движителя. Основными его деталями являются: водозаборник с защитной решеткой на входе и фланцем для крепления движителя к транцу катера; четырехлопастной ротор, имеющий дисковое отношение A/Ad = 0,8, диаметр 189 и шаг 190 мм; сопло с вмонтированным в него спрямляющим аппаратом; реверсивно-рулевое устройство и гребной вал с подшипниками и дейдвудным уплотнением.

1 - гребной вал; 2 - крышка корпуса дейдвудного подшипника; 3 - сальник Ø 20X42X11; 4 - гайка М8, 10 шт.; 5 - шайба 8, 10 шт.; 6 - прокладка; 7 - подшипник № 46205; 8 - пресс-масленка; 9 - сальник Ø 25X47X11, 2 шт.; 10 - корпус дейдвудного подшипника; 11 - водозаборник; 12 - корпус смотрового лючка; 13 - гайка-барашек М10, 2 шт.; 14 - крышка лючка; металл, пенопласт, стеклопластик; 15 - статор (кольцо с фланцем); 16 - болт М8X70, 6 шт.; 17 - шплинт 2,5X45; 18 - гайка-обтекатель; 19 - реверсивно-рулевое устройство; 20 - резино-металлический подшипник; 21 - винт М4X12; 22 - гайка М24X1; 23 - стопорная шайба; 24 - сопло - спрямляющий аппарат; 25 - ротор; 26 - шпонка Б 8X50; сталь 2X13; 27 - заполнитель - пенопласт; 28 - приформовка, стеклопластик; 29 - винт М6Х12, 8 шт.; 30 - полоса защитной решетки 3Х18; 31 - планка 4X20X150, 2 шт.; 32 - штуцер - водозаборник системы охлаждения двигателя; 33 - штуцер вентиляции ротора; 34,35 - фланцы; 36 - ступица спрямляющего аппарата; 37 - лопатка спрямляющего аппарата; 38 - насадка реверсивно-рулевого устройства; 39 - шпилька М8X24; 40 - обтекатель.

Судовые устройства.

Служат для обеспечения необходимых эксплуатационных и навигационных качеств судна. К основным судовым устройствам, которыми оборудуют почти все суда, относятся: рулевое,якорное, швартовное, кранцевое, шлюпочное, грузовое, буксирное, леерное, тентовое и др.

Рулевое и подруливающее устройство.

Рулевое устройство, в состав которого входят руль и привод руля, предназначено для управления судном.

Руль состоит из пера и баллера. Перо - это плоский или двухслойный обтекаемый щит с внутренними подкрепляющими ребрами. Баллер - это стержень, при помощи которого поворачивают перо руля. Различают: обыкновенные рули, балансирные рули, полубалансирные рули.

Рис.12 Рулевое устройство с электрическим приводом:

а - расположение рулевого устройства.

1 - рулевая машина; 2 - рулевой штырь; 3 - полубалансирный руль; 4 - баллер руля.

b - секторная рулевая передача с электрическим приводом.

1 - ручной штурвальный привод (аварийный привод); 2 - румпель; 3 - редуктор;

4 - рулевой сектор; 5 - двигатель; 6 - пружина; 7 - баллер руля;

8 - профильный фигурный руль; 9 - сегмент червячного колеса и тормоза; 10 - червяк.

Рис.13 Рулевое устройство с гидравлическим приводом:

а - схема гидропривода рулевого устройства типа Атлас с телемоторами;

b - поршень гидравлической рулевой машины.

1 - подключение к бортовой сети; 2 - кабельные соединения; 3 - запасная канистра;

4 - рулевой насос; 5 - рулевая колонка с датчиком телемотора; 6 - индикаторный прибор;

7 - приемник телемоторов; 8 - двигатель; 9 - гидравлическая рулевая машина;

10 - баллер руля; 11 - датчик указателя положения руля.

Рис. 7.14. Схема рулевого устройства

1,2- втулки баллера; 3 - компенсирующее кольцо; 4 - упорный подшипник баллера; 5 - бугель; б - масленка; 7 - гельмпортова труба; 8 - резиновое кольцо; 9 - уплотнение ра; 10 - пятка ахтерштевня; 11 - упор; 12 - штырь; 13- облицовка штыря; 14 - втулка бронзовая; 15 - баллер; 16 - перо руля; 17 - рулевая машина

Привод руля состоит из механизмов и устройств, предназначенных для перекладки руля на борт. В их число входят рулевая машина, рулевой привод. Рулевую машину обычно размещают в специальном румпельном отделении. Передача на руль усилий. Развиваемых в рулевой машине, осуществляется с помощью рулевого привода . Различают румпельный, секторный и винтовой приводы.

Привод управления рулевой машины (рулевая передача) служит для передачи команд из рулевой рубки на рулевую машину.

Дополнительные средства управления:

Носовой руль;

Активный руль;

Поворотная насадка;

Подруливающее устройство.

Рулевая машина состоит из следующих основных конструктивных узлов: привода к баллеру (румпель, гидравлические цилиндры, плунжеры, ползуны); насосов постоянной или переменной производительности; электроприводов насосов; аварийного привода; системы управления и масляного трубопровода с ручным насосом, арматурой и баками.

Рис. 17.1. Привод к баллеру руля рулевой машины в четырехцилиндровом

Исполнении

Цилиндры (рис. 17.2) небольших рулевых машин изготовляют цельными, а больших размеров (для упрощения получения заготовки и обработки) - сварными либо собранными из двух частей: цилиндра и донышка.

Рис. 17.2. Цилиндр

Рис. 17.3. Плунжер

Рис. 17.4. Румпель

Основные детали должны обладать высокой прочностью, иметь большую точность взаимного расположения, высокую точность и шероховатость рабочих поверхностей.

Цилиндры, состоящие из двух частей, обрабатывают в следующем порядке. Вначале обрабатывают каждую часть в отдельности с припуском на дальнейшую механическую обработку и торцы под сварку. Чтобы получить высокую точность соосности и параллельности, расточку ведут двух пар цилиндров с проверкой индикатором их установки по поверхности сопряжения с направляющими балками с точностью 0,01 мм. При этом вначале растачивают поверхности первой пары цилиндров, а затем, не изменяя установку шпинделя по вертикали, - второй пары цилиндров одной рулевой машины.

Якорное устройство.

Служит для обеспечения надежной стоянки в море, на рейде и в других местах, удаленных от берега, путем крепления за грунт с помощью якоря и якорной цепи. В его состав входят: якоря (рис.9), якорные цепи (рис.9), якорные машины, якорные клюзы и стопоры.


Рис.9 Якорь, якорная цепь

Якоря различают на становые и вспомогательные .

Основными частями любого якоря являются веретено и рога (лапы).

Якорная цепь служит для крепления якоря к корпусу судна.

Якорными машинами для подъема якоря служат лебедки с горизонтальной осью вращения барабана- брашпили - или с вертикальной осью вращения барабана- шпили.

Рис. 7.13 Схема якорного устройства

1 - якорь; 2 - якорная ниша; 3 - труба якорного клюза; 4 - палубный клюз; 5 - якорная Цепь; б - винтовой стопор; 7 - брашпиль; 8 - труба в цепной ящик; 9 - цепной ящик; 10- зашивка цепного ящика; 11 - привод отдачи коренного конца якорной цепи; 12 - глаголь-гак

Якорно-швартовные шпили бывают одноголовые и двухголовые с вертикальным расположением швартовного барабана и цепной звездочки. Двухпалубные шпили изготовляют в виде отдельных узлов: головки с баллером, привода с редуктором и ручного привода тормоза,- из которых они собираются на стенде и на судне. Однопалубные шпили более компактны - у них отсутствует баллер; все узлы и детали располагаются в одной плоскости, что позволяет изготовлять их в агрегатном виде.

Двухпалубный одноголовый с электрическим приводом якорно-швартовный шпиль (рис. 18.1) включает в себя головку шпиля, состоящую из швартовного барабана 2, надетого на баллер на двух шпонках, и цепную звездочку 3,

.

Рис. 18.1. Якорно-швартовный двухпалубный шпиль с электрическим

приводом

.

Стопоры предназначены для крепления якорных цепей и удержания якоря в клюзе в походном положении.

Швартовное и кранцевое устройства.

Швартовное устройство служит для обеспечения надежной стоянки судна у пирса или около другого плавучего сооружения (судна, бочки).

В состав входят:

-кнехты- стальные или чугунные тумбы для крепления швартовов на судне;

-клюзы- стальные или чугунные отливки с овальным отверстием в фальшборте для направления швартова к швартовному кнехту;

Лебедки (рис.10) или шпили (рис.11) (паровые, электрические, гидравлические)- предназначены для подтягивания судна к пирсу после закрепления на нем швартовов. Лебедки бывают простые и автоматические.


Чтобы предотвратить повреждения борта при швартовке к причалу, особенно при швартовке судов друг к другу в открытом море на волнении, на судах предусматривают кранцевое устройство - мягкие или деревянные подушки, вываливаемые за борт или закрепленные постоянно на борту в местах, наиболее подверженных ударам.

Спасательные средства.

Спасательные средства - это совокупность предусмотренных на судне средств спасания пассажиров и экипажа, включающая:

§ шлюпочное устройство , предназначено для спасения людей в случаи гибели судна, а также для сообщения с берегом и другими судами. В состав входят: спасательные шлюпки (рис.12), плоты, капсулы , рабочие шлюпки, разъездные катера, шлюпбалки ;

§ спасательные плоты ;

§ плавучие приборы и спасательные средства индивидуального пользования.


Рис.12 спасательные шлюпки.

Грузовые устройства.

Предназначены для выполнения погрузочно-разгрузочных работ судовыми средствами. В состав грузовых устройств на сухогрузных судах входят стрелы или краны, закрытия грузовых люков и средства внутритрюмной механизации.

Рис. 23 Грузовые мачты: а) – одиночная; б) – Л-образная; в) – П-образная

Буксирные устройства буксирных судов.

Буксирное устройство , устанавливаемое на буксирных и спасательных судах, предназначено для буксировки несамоходных судов и плавсредств, а также самоходных судов, потерявших возможность двигаться своим ходом.

В состав входят:

Буксирная лебедка,

Гак, или направляющий блок,

Буксирная дуга,

буксирный клюз и ограничители буксирного троса.

Специальные устройства (например, передачи грузов, рыбопромысловые, научно-исследовательские и т.п.).

Арматура судовых трубопроводов служит для пуска и выключения системы, разобщения отдельных ее участков, регулирования количества и давления рабочей среды, изменения направления ее движения. Арматуру разделяют на краны, клапаны, клинкеты , захлопки и заслонки.