Аккумуляторы AGM VRLA. Особенности применения свинцово-кислотных аккумуляторов Как заряжать VRLA батареи


Нужна достоверная инфа по данной теме.

Вот что я нарыл в инете:
Аккумуляторы:
Герметичные свинцово-кислотные аккумуляторы.
В международной интерпретации принято обозначение в виде SEALED LEAD ACID BATTERY или сокращенно SLA.
Свинцово-кислотный аккумулятор, изобретенный в 1859 году, был первым заряжаемым аккумулятором, предназначенным для использования в коммерческих целях. Сегодня заливаемые свинцово-кислотные аккумуляторы используются в автомобилях и оборудовании, требующим отдачи большой мощности. В портативных приборах используются герметичные аккумуляторы или аккумуляторы с регулирующим клапаном, открывающимся при увеличении давления внутри корпуса выше заданного порогового значения.
Существует несколько технологий изготовления SLA-аккумуляторов: Gelled Electrolite (GEL), Absorptive Glass Mat (AGM), а также различные гибридные технологии, использующие один или несколько способов улучшения параметров аккумуляторов. При изготовлении по GEL-технологии путем добавления в электролит специальных веществ обеспечивается его переход в желеобразное состояние через несколько часов после заполнения аккумулятора. В толще желеобразного электролита происходит образование пор и раковин, имеющих значительный объем и площадь поверхности, где происходит встреча и рекомбинация молекул кислорода и водорода с образованием воды. В результате количество электролита остается неизменным и доливка воды не требуется в течение всего срока службы. При технологии AGM использует пропитанный жидким электролитом пористый заполнитель из стекловолокна. Микропоры этого материала заполнены электролитом не полностью. Свободный объем используется для рекомбинации газов.
SLA-аккумуляторы обычно используется в случаях, когда требуется отдача большой мощности, вес не критичен, а стоимость должна быть минимальной. Диапазон значений емкости для портативных приборов лежит в диапазоне от 1 до 30 A*час. Большие SLA-аккумуляторы для стационарных применений имеют емкость от 50 до 200 A*час.
SLA-аккумуляторы не подвержены "эффекту памяти". Без всякого вреда допускается оставлять аккумулятор в зарядном устройстве на плавающем заряде в течение длительного времени. Сохранение заряда - лучшее среди заряжаемых аккумуляторов. Принимая во внимание, что NiCd аккумуляторы саморазряжаются за три месяца на 40 % от запасенной энергии, SLA-аккумуляторы саморазряжаются на то же самое количество за один год. Эти аккумуляторы недороги, но стоимость их эксплуатации может быть выше, чем у NiCd, если в течение срока эксплуатации требуется большое количество циклов заряд/разряд.
Для SLA-аккумуляторов неприемлем режим быстрого заряда. Типовое время заряда - от 8 до 16 часов.
В отличие от NiCd, SLA-аккумуляторы "не любят" глубоких циклов разряда и хранения в разряженном состоянии. Это приводит к сульфатации пластин аккумулятора, в результате чего их заряд становится трудным, если не невозможным. Фактически, каждый цикл заряда/разряда отнимает у аккумулятора небольшое количество емкости. Эта потеря очень небольшая, если аккумулятор находится в хорошем состоянии, но становится более ощутима, как только емкость понижается ниже 80 % от номинальной. Это в различной степени справедливо и для аккумуляторов других электрохимических систем. Чтобы ослабить влияние глубокого разряда, можно использовать SLA-аккумулятор немного большего размера.
В зависимости от глубины разряда и температуры эксплуатации, SLA-аккумулятор обеспечивает от 200 до 500 циклов заряд/разряд. Основная причина относительно небольшого количества циклов - расширение положительных пластин в результате внутренних химических реакций. Это явление наиболее сильно проявляется при более высоких температурах. SLA-аккумуляторы обладают относительно низкой плотностью энергии по сравнению с другими аккумуляторами и, вследствие этого, непригодны для компактных устройств. Это становится особенно критичным при низких температурах, так как способность отдавать ток в нагрузку при низких температурах значительно уменьшается. Как ни парадоксально, SLA-аккумулятор весьма хорошо заряжается с чередующимися импульсами разряда. В течение этих импульсов ток разряда может достигать значения более 1C (номинальной емкости).
Из-за высокого содержания свинца, SLA-аккумуляторы при неправильной утилизации экологически вредны.
Никель-кадмиевые аккумуляторы.
В международной интерпретации принято обозначение в виде NICKEL-CADMIUM BATTERY или сокращенно NiCd.
Технология изготовления щелочных никелевых аккумуляторов была впервые предложена в 1899 году. Используемые в них материалы были в то время дорогими и аккумуляторы применялись только при изготовлении специальной техники. В 1932 году в пористый пластинчатый никелевый электрод были добавлены активные вещества, а в 1947 году было положено начало исследованиям герметичных NiCd-аккумуляторов, в которых внутренние газы, выделяющиеся во время заряда, рекомбинировались внутри, а не выпускались наружу как в предыдущих вариантах. Эти усовершенствования привели к современному герметичному NiCd-аккумулятору, который и используется сегодня.
NiCd-аккумулятор - ветеран на рынке мобильных и портативных устройств. Отлаженная технология и надежная работа обеспечили ему широкое распространение для электропитания переносных радиостанций, медицинского оборудования, профессиональных видеокамер, регистрирующих устройств, мощных ручных инструментов и другой портативной техники и оборудования. Появление аккумуляторов более новых электрохимических систем хотя и привело к уменьшению использования NiCd-аккумуляторов, однако, выявление недостатков новых видов аккумуляторов привело к возобновлению интереса к NiCd-аккумуляторам.
Их основные достоинства:
быстрый и простой метод заряда;
длительный срок службы - свыше тысячи циклов заряда/разряда при соблюдении правил эксплуатации и обслуживания;
превосходная нагрузочная способность, даже при низких температурах. NiCd-аккумулятор можно перезаряжать при низких температурах;
простое хранение и транспортировка. NiCd-аккумуляторы принимаются большинством воздушных грузовых компаний;
легкое восстановление после понижения емкости и длительного хранения;
низкая чувствительность к неправильным действиям потребителя;
доступная цена;
широкий диапазон типоразмеров.
NiCd-аккумулятор подобен сильному и молчаливому работнику, который интенсивно трудится и при этом не доставляет больших хлопот. Для него предпочтителен быстрый заряд по сравнению с медленным и импульсный заряд по сравнению с зарядом постоянным током. Улучшение эффективности достигается распределением импульсов разряда между импульсами заряда. Этот метод заряда, обычно называемый реверсивным, восстанавливает структуру кадмиевых анодов, устраняя тем самым "эффект памяти", и увеличивает эффективность и срок эксплуатации аккумулятора. Кроме этого, реверсивный заряд позволяет проводить заряд большим током за меньшее время, т.к. помогает рекомбинации газов, выделяющихся во время заряда. В результате аккумулятор меньше нагревается и более эффективно заряжается по сравнению со стандартным методом заряда постоянным током. Исследования, проведенные в Германии, показали, что реверсивный заряд добавляет около 15 % к сроку службы NiCd-аккумулятора.
Для NiCd-аккумуляторов вредно нахождение в зарядном устройстве в течение нескольких дней. Фактически, NiCd аккумуляторы - это единственный тип аккумуляторов, который выполняет свои функции лучше всего, если периодически подвергается полному разряду, а если он не производится, то аккумуляторы постепенно теряют эффективность из-за формирования больших кристаллов на пластинах элемента, явления, называемого "эффектом памяти". Для всей остальной разновидности аккумуляторов по электрохимической системе предпочтителен неглубокий разряд.
Среди недостатков NiCd-аккумулятора следует отметить:
наличие "эффекта памяти" и, вследствие этого, необходимость полной периодической разрядки для сохранения эксплуатационных свойств;
высокий саморазряд (до 10 % в течение первых 24-х часов), поэтому аккумуляторы должны храниться в разряженном состоянии;
аккумулятор содержит кадмий и требует специальной утилизации. В ряде стран по этой причине в настоящее время он уже запрещен к использованию.
Никель-металлгидридные аккумуляторы. В международной интерпретации принято обозначение в виде NICKEL METAL-HYDRIDE BATTERY или сокращенно NiMH.
Исследования в области технологии изготовления NiMH-аккумуляторов были начаты в семидесятые годы с целью преодоления недостатков никель-кадмиевых аккумуляторов. Однако применяемые в то время металлгидридные соединения были нестабильны и требуемые характеристики не были достигнуты. В результате разработки в области NiMH-аккумуляторов замедлились. Новые металлгидридные соединения, достаточно устойчивые для применения в аккумуляторах, были разработаны в 1980 году. Начиная с конца восьмидесятых годов, технология изготовления NiMH-аккумуляторов постоянно совершенствовалась, и плотность запасаемой ими энергии возрастала.
Некоторые отличительные преимущества сегодняшних NiMH-аккумуляторов:
примерно на 40 - 50 % большая удельная емкость по сравнению со стандартными NiCd-аккумуляторами;
меньшая склонность к "эффекту памяти", чем у NiCd. Периодические циклы восстановления должны выполняться реже;
меньшая токсичность. NiMH-технология считается экологически чистой.
К сожалению, NiMH-аккумуляторы имеют недостатки и по некоторым параметрам проигрывают NiCd:
число циклов заряд/разряд для NiMH-аккумуляторов примерно равно 500. Предпочтителен скорее поверхностный, чем глубокий разряд. Долговечность аккумуляторов непосредственно связана с глубиной разряда;
NiMH-аккумулятор по сравнению с NiCd выделяет значительно большее количество тепла во время заряда и требует более сложного алгоритма для обнаружения момента полного заряда, если не используется контроль по температуре. Большинство NiMH-аккумуляторов оборудовано внутренним температурным датчиком для получения дополнительного критерия обнаружения полного заряда. NiMH-аккумулятор не может заряжаться так быстро, как NiCd; время заряда обычно вдвое больше, чем у NiCd. Плавающий заряд должен быть более контролируемым, чем для NiCd-аккумуляторов;
рекомендуемый ток разряда для NiMH-аккумуляторов - от 0.2C до 0.5C - значительно меньше, чем для NiCd. Этот недостаток не критичен, если требуемый ток нагрузки низок. Для применений, требующих высокого тока нагрузки или имеющих импульсную нагрузку, типа переносных радиостанций и мощных ручных инструментов, рекомендуются NiCd-аккумуляторы;
саморазряд NiMH-аккумуляторов - в 1.5-2 раза выше, чем у NiCd;
цена NiMH-аккумуляторов примерно на 30 % выше, чем NiCd. Однако это не главная проблема, если пользователю требуется большая емкость и небольшие габариты.
Технология изготовления никель-металлгидридных аккумуляторов постоянно совершенствуется. Так, например, фирма GP Batteries International Limited изготавливает NiMH-аккумуляторы для сотовых телефонов фирмы Motorola со следующими характеристиками: количество циклов заряда/разряда - 1000, отсутствие "эффекта памяти" и необходимости разряда аккумулятора перед зарядом.
Литий-ионные аккумуляторы. В международной интерпретации принято обозначение в виде LITHIUM ION BATTERY или сокращенно Li-ion.
Литий является самым легким металлом и обладает сильно отрицательным электрохимическим потенциалом. Благодаря этому литий характеризуется наибольшей теоретической удельной электрической энергией.
Первые работы по литиевым аккумуляторам относятся к 1912 году. Однако только в 1970 году впервые были изготовлены коммерческие экземпляры литиевых источников тока. Попытки разработать перезаряжаемые литиевые источники тока предпринимались в 80-е годы, но были неудачными из-за невозможности обеспечения приемлемого уровня безопасности при их эксплуатации.
В результате исследований, проведенных в 80-х годах, было установлено, что в ходе циклирования источника тока с металлическим литиевым электродом возможно возникновение короткого замыкания внутри литиевого источника тока. При этом температура внутри аккумулятора может достигать температуры плавления лития. В результате бурного химического взаимодействия лития с электролитом происходит взрыв. Поэтому, например, большое количество литиевых аккумуляторов, поставленных в Японию в 1991г., было возвращено производителям после того, как в результате взрывов элементов питания сотовых телефонов от ожогов пострадали несколько человек.
В процессе создания безопасного источника тока на основе лития, исследования привели к замене в аккумуляторе неустойчивого при циклировании металлического лития на его соединения с другими веществами. Эти электродные материалы обладают в несколько раз меньшей по сравнению с литием удельной электрической энергией, однако, аккумуляторы на их основе являются достаточно безопасными при условии соблюдения некоторых мер предосторожности в ходе заряда/разряда. В 1991 году, фирма Sony начала коммерческое производство литий-ионных аккумуляторов и в настоящее время она является одним из самых крупных поставщиков.
Для обеспечения безопасности и долговечности, каждый аккумулятор должен быть оборудован электрической схемой управления для того, чтобы ограничить пиковое напряжение каждого элемента во время заряда и предотвратить понижение напряжения элемента при разряде ниже допустимого уровня. Кроме того, должен быть ограничен максимальный ток заряда и разряда и должна контролироваться температура элемента. При соблюдении этих предосторожностей возможность образования металлического лития на поверхности электродов в ходе эксплуатации (что наиболее часто приводит к нежелательным последствиям) практически устранена.
По материалу отрицательного электрода литий-ионные аккумуляторы можно разделить на два основных типа: с отрицательным электродом на основе кокса (фирма Sony) и на основе графита (большинство других изготовителей). Источники тока с отрицательным электродом на основе графита имеют более плавную разрядную кривую с резким падением напряжения в конце разряда, по сравнению с более пологой разрядной кривой аккумулятора с коксовым электродом. Поэтому, в целях получения максимально возможной емкости, конечное напряжение разряда аккумуляторов с отрицательным коксовым электродом обычно устанавливают ниже (до 2.5 V), по сравнению с аккумуляторами с графитовым электродом (до 3.0 V). Кроме того, аккумуляторы с отрицательным графитовым электродом способны обеспечить более высокий ток нагрузки и меньший нагрев во время заряда и разряда, чем аккумуляторы с отрицательным коксовым электродом. Напряжение окончания разряда 3.0 V для аккумуляторов с отрицательным графитовым электродом является его основным преимуществом, так как полезная энергия в этом случае сконцентрирована внутри плотного верхнего диапазона напряжения, упрощая тем самым проектирование портативных устройств.
Производители непрерывно совершенствуют технологию Li-ion аккумуляторов. Идет постоянный поиск и совершенствование материалов электродов и состава электролита. Параллельно предпринимаются меры для повышения безопасности Li-ion аккумуляторов, как на уровне отдельных источников тока, так и на уровне управляющих электрических схем. Поскольку эти аккумуляторы обладают очень высокой удельной энергией, то необходимо соблюдать осторожность при обращении с ними и тестировании: не допускать короткого замыкания аккумулятора, перезаряда, разрушения, разборки, подключения в обратной полярности, не подвергать их воздействию высоких температур. Нарушение этих правил может привести к физическому и материальному ущербу.
Литий-ионные аккумуляторы являются наиболее перспективными аккумуляторами в настоящее время и начинают широко применяться в портативных компьютерах и мобильных устройствах связи. Это обусловлено:
высокой плотностью электрической энергии, по крайней мере, вдвое большей, чем у NiCd того же размера, а значит и вдвое меньшими габаритами при той же самой емкости;
большим числом циклов заряд/разряд (от 500 до 1000);
хорошей работой на больших токах нагрузки, что необходимо, например, при использовании данных аккумуляторов в сотовых телефонах и портативных компьютерах;
достаточно низким саморазрядом (2-5% в месяц плюс примерно 3 % на питание встроенной электронной схемы защиты);
отсутствием каких-либо требований к обслуживанию, за исключением необходимости предварительного заряда перед длительным хранением;
позволяют проводить заряд при любой степени разряда аккумулятора.

Но и здесь примешивается "ложка дегтя": для аккумуляторов некоторых производителей гарантируется работа только при положительных температурах, высокая цена (примерно вдвое превышающая цену NiCd-аккумуляторов) и подверженность процессу старения, даже в случае, если аккумулятор не используется. Ухудшение параметров наблюдается примерно после одного года с момента изготовления. После двух лет службы аккумулятор часто становится неисправным. Поэтому не рекомендуется хранить Li-ion аккумуляторы в течение длительного времени. Максимально используйте их, пока они новые.
Кроме этого, Li-ion-аккумуляторы должны храниться в заряженном состоянии. При длительном хранении в глубоко разряженном состоянии они выходят из строя.
Li-ion-аккумуляторы сегодня являются наиболее дорогими. Совершенствование технологии их производства и замена оксида кобальта на менее дорогой материалом может привести к уменьшению их стоимости до 50 % в течение ближайших нескольких лет.
Литий-полимерные аккумуляторы.
В международной интерпретации принято обозначение в виде LITHIUM POLIMER BATTERY или сокращенно Li-Pol.
Литий-полимерные аккумуляторы - последняя новинка в литиевой технологии. Имея примерно такую же плотность энергии, что и Li-ion-аккумуляторы, литий-полимерные допускают изготовление в различных пластичных геометрических формах, нетрадиционных для обычных аккумуляторов, в том числе достаточно тонких по толщине, и способных заполнять любое свободное место в разрабатываемой аппаратуре.
Этот аккумулятор, называемый также "пластиковым", конструктивно подобен Li-ion, но имеет гелевый электролит. В результате становится возможной упрощение конструкции элемента, поскольку любая утечка электролита невозможна.
Li-pol-аккумуляторы начинают применяться в портативных компьютерах и сотовых телефонах. Например, сотовые телефоны Panasonic GD90 и Ericsson T28s (стандарт GSM 900/1800), укомплектованы литий-полимерными аккумуляторами толщиной всего 3 мм и имеют емкость, достаточную для работы в течение 3-х часов в режиме разговора и до 90 часов в режиме ожидания.
Каталог аккумуляторов...

Принцип работы

Принцип работы СКА основан на окислительных свойствах четырехвалентного свинца и его переходе в более устойчивое двухвалентное состояние. СКА в простейшем случае можно рассмотреть как две решетчатые свинцовые пластины, ячейки которых заполняются тестообразной смесью окиси свинца с водой. Пластины погружаются в разбавленную серную кислоту плотностью 1,15-1,20 г.см3(22-28% H2SO4). Вследствие реакции

PbO + H 2 SO 4 = PbSO 4 + H 2 O

Окись свинца превращается через некоторое время в сернокислый свинец. Если теперь попустить через эти пластины постоянный ток, то аккумулятор будет заряжаться, причем у электродов будут происходить следующие процессы:

ЗАРЯД

КАТОД PbSO 4 + 2е - = Pb + SO 4

АНОД PbSO 4 - 2 е - + H2O = PbO 2 + 4H + SO 4 -2

Таким образом, по мере пропускания тока на катоде образуется рыхлая масса металлического свинца, а на аноде - темно-бурая окись свинца. По окончанию зарядки аккумулятора начнется энергетичное разложение воды: у катода выделяется водород, у анода - кислород.

При соединении пластин проводником с платины покрытой свинцом, часть ионов двухвалентного свинца переходит в раствор, освобождающиеся при этом электроны по проводнику переходят к PbO 2 и восстанавливают четырехвалентный свинец в двухвалентный. В результате у той и другой пластины образуются ионы двухвалентного свинца, которые соединяются с находящимися в растворе ионами SO 4 в нерастворимый сернокислый свинец, и аккумулятор разряжается.

РАЗРЯД

ОТРИЦАТЕЛЬНЫЙ ЭЛЕКТРОДPb 0 - 2е - + SO 4 -2 = PbSO 4

ПОЛОЖИТЕЛЬНЫЙ ЭЛЕКТРОД PbSO 4 + 2е - + 4 H + SO 4 -2 = PbSO 4 + 2H 2 O

При разрядке аккумулятора концентрация серной кислоты уменьшается, так как расходуются сульфат - ионы и ионы водорода и образуется вода. Поэтому о степени разряженности аккумулятора можно судить по плотности кислоты.

Особенности свинцово-кислотных аккумуляторов.

Экономичнее СКА до сих пор ничего не изобретено. Широкое распространение они получили благодаря высокой надежности и низкой цене.

Первый СКА был изобретен в 1859 г. французским ученым Гастоном Планте, его конструкция представляла электроды из листового свинца, разделенные сепараторами из полотна, которые были свернуты в спираль и помещены в сосуд с 10% раствором серной кислоты. Первоначально у них была низкая емкость, и требовалось достаточно большое количество циклов заряда-разряда, чтобы увеличить емкость, для получения существенного результата требовалось до двух лет.

В 1880г. К. Фор предложил предложил технологию изготовления намазных электродов, путем нанесения на пластины окислов свинца. А в 1881 г. Э. Фолькмар предложил использовать в качестве электродов намазную решетку. В том же году Седлону был выдан патент на технологию изготовления решеток из сплавов свинца и сурьмы. Однако существовала проблема заряда батарей (для заряда применялисьпервичные элементы конструкции Бунзена - один ХИТ заряжал другой). Ситуация кардинально изменилась с появлением генераторов постоянного тока.

К 1890 г был освоен серийный выпуск СКА, а в 1900г. Varta выпустила первый стартерный аккумулятор.

В настоящее время активно производятся и используются аккумуляторы трех поколений

Батареи первого поколения - батареи с жидким электролитом открытого или закрытого типа, имеющие емкость от 36 Ач до 5328 Ач и срок службы от 10 до 20 лет. Батареи открытого типа непосредственно соприкасается с открытым воздухом, и основные затраты связанны с обслуживанием (доливка дисцилиронанной воды) и расходы на содержание хорошо вентилируемых помещений. Батареи закрытого типа имеют специальные пробки, обеспечивающие задержку аэрозоли серной кислоты. Батареи закрытого типа могут быть необслуживаемые, т.е.они поставляются залитыми и заряженными, и в течение всего срока службы нет необходимости доливки воды (конструкция пробок обеспечивает удержание паров воды в виде конденсата).

Батареи второго поколения - герметизированные гелевые батареи (GEL). В них используется гелеобразный электролит, представляющий собой желе, полученное в результате смешивания раствора серной кислоты с загустителем (обычно двуокись кремния SiO 2 - селикагель). Благодаря своей вязкости он хорошо удерживается в порах и способствует эффективному использованию активных веществ электродов. Транспорт кислорода обеспечивается по трещинам, которые возникают при усадке твердеющего электролита. Гелевые батареи в течение всего срока эксплуатации не нуждаются в обслуживании, их нельзя вскрывать. Для их подзаряда необходимо использовать ЗУ, обеспечивающие стабильность напряжения заряда не хуже 1% для предотвращения обильного газовыделения. Такие аккумуляторы критичны к температуре окружающей среды.

Батареи третьего поколения - геметизированные батареи с абсорбированным сепараторами электролита (AGM - absorbed in glass mat).. Такой сепаратор из стекловалокна, представляет собой пористую систему, в которой капиллярные силы удерживают электролит. При этом количество электролита дозируется так, чтобы мелкие поры были заполнены, а крупные оставались свободными для свободной циркуляции выделяющихся газов. Благодаря тонкой структуре волокон обеспечивается высокая скорость переноса кислорода. Использование стекловолокнистого сепаратора и плотная сборка блока электродов способствует также уменьшению оплывания активной массы положительного электрода и разбуханию губчатого свинца на отрицательном электроде. Газообразование в них существенно меньше, чем в гелевых, меньше оказывает влияние на работу температура окружающей среды. Хотя требования к ЗУ такие же, как и для гелевых.

Для обозначения типа аккумуляторной батареи указывают ее маркировку, которая определяется конструкцией положительных пластин

Маркировка

Особенности конструкции

Стандарт

GroE

Стационарные батареи с поверхностными положительными пластинами

DIN 40732/ DIN 40738

OPzS

Стационарные батареи с панцирными положительными пластинами и разделителями

DIN 40736/ DIN 40737

Стационарные батареи с решетчатыми положительными пластинами

DIN 40734/ DIN 40739

Моноблочные батареи с решетчатыми положительными пластинами

DIN 43534

В СКА электролитом является раствор серной кислоты, активным веществом положительных пластин - оксид свинца, отрицательных - свинец. В гелевых аккумуляторах жидкий электролит заменили гелеобразным абсорбированным сепараторами электролит, батареи герметизировали, а для отвода газа, выделяющегося при заряде или разряде, установили безопасные клапаны. Были разработаны новые конструкции пластин на основе медно-кальциевых сплавов, покрытых оксидом свинца, на основе титановых, алюминиевых и медных решеток.

При изготовлении СКА применяют химические добавки. Например к свинцу добавляют сурьму (доля в сплаве 1-10%), которая обеспечивает более прочный электрический контакта активного материала с решеткой, предотвращает его осыпание, что позволяет увеличить срок службы батарей. Также используются свинцово-кальциевые сплавы, позволяющие сделать пластины более легкими и прочными при сохранении высоких электрических и механических характеристик.

Следует обратить внимание, что увеличить емкость свинцовой батареи можно сравнительно легко, например, добавив в батарею никель, при этом понизится также и себестоимость, но при этом ухудшится и безопасность.

Корпус для батареи изготавливают призматической формы из пластмассы. Хотя существуют батареи цилиндрической формы. Они обеспечивают более высокую стабильность в работе, больший ток разряда, лучшую температурную стабильность.

Основные проблемы при создании герметичного варианта СКА связаны с необходимостью обеспечения условий для уменьшения газовыделения и содействия рекомбинации выделяющегося газа.

Для этого предпринят ряд мер:

1. Использование иммобилизированного (обезвоженного) электролита, который сохраняет высокую электропроводность серной кислоты. Малое его количество позволяет обеспечить лучший транспорт кислорода от положительного электрода к отрицательному и высокий уровень его рекомбинации.

2. Для уменьшения вероятности выделения водорода свинцово-сурьмяные сплавы токоведущих решеток заменяют другими (сплав свинца и кальция до0,1 % Ca , иногда легированного алюминием, сплавы свинца с оловом 0,5-2,5 % Sn ), обеспечивающими более высокое перенапряжение выделения водорода.

3. В отрицательный электрод закладывается емкость больше, чам в положительный. В этом случае при полном заряде положительного электрода оставшаяся недозаряженной часть активной массы отрицательного электрода практически исключает возможность разряда ионов водорода. Кислород, выделяющийся на диоксиде свинца, достигает отрицательного электрода и окисляет губчатый свинец до оксида свинца, который в кислотном электролите переходит в сульфат свинца PbSO 4 и воду. Т.о. газы не выделяются и вода не теряется.

И все же варианты безуходного СКА снабжены аварийным клапаном. При нарушении режимов заряда, при повышенном токе, в батарее происходит активное газообразование (главным образом водорода). Когда давление газов достигнет величины 7,1 … 43,6 кПа откроется предохранительный клапан для обеспечения вентиляции батареи, и благодаря этому устраняется опасность ее взрыва. Поэтому аккумуляторы называются не герметичными, а герметизированными. Другая роль клапана - предотвращение попадания внутрь корпуса атмосферного кислорода во избежание его реакции с активным материалов негативных пластин.

Аккумуляторы содержащие предохранительный клапан называют аккумуляторы VRLA (valve regulated lead acid batteries ) .

Напряжение на элементе СКА - 2,2 В

Среди всех типов аккумуляторов СКА отличаются наименьшей энергетической плотностью. Это делает нецелесообразно их использование в переносных устройствах. Современные герметизированные СКА обладают следующими удельными характеристиками - 40 Втч/ч и 100 Втч/дм3. Они работают в буферном режиме до 10 лет, при циклировании они обеспечивают несколько сотен циклов до безвозвратной потери 20% емкости.

Их продолжительный заряд не станет причиной выхода из строя батареи.

Способность сохранять заряд у этих батарей наилучшая из всех типов аккумуляторных батарей (саморазряд - 40% в год). Они недороги, но эксплуатационные расходы на них выше, чем на те же НКА.

Время заряда СКА составляет 8…16 часов

Номинальной емкостью СКА считается емкость, полученная при разряде в течение 20 часов, т. е. током 0,05С.

В зависимости от глубины разряда и рабочей температуры ресурс СКА может составлять от 1года до 20 лет. В значительной степени срок службы определяется конструкцией элементов батареи.

Главная опасность эксплуатации батареи с неоднородными аккумуляторами определяется тем, что при циклировании с большим количеством аккумуляторов отклонения электрических характеристик одного из них от стандартных незаметны. Но аккумулятор с повышенным сопротивлением будет разогреваться значительно больше остальных, что ведет к повышенным потерям воды и быстрой деградации всей батареи.

Преимущества СКА :

Дешевизна и простота производства - по стоимости 1 Вт ч энергии эта батарея является самой дешевой;

Отработанная, надежная и хорошо понятная технология обслуживания;

Малый саморазряд;

Низкие требования по обслуживанию (отсутствие «эффекта памяти»);

Допустимы высокие токи разряда.

Недостатки СКА :

Не допускается хранение в разряженном состоянии;

Низкая энергетическая плотность;

Допустимо лишь ограниченное количество циклов заряда/разряда;

Кислотный электролит и свинец оказывают вредное воздействие на окружающую среду;

У всех аккумуляторов есть срок годности, с многочисленными циклами заряда-разряда и множеством проработанных часов аккумулятор теряет свою емкость и держит заряд все меньше и меньше.
Со временем емкость аккумулятора настолько падает что дальнейшая его эксплуатация стает невозможна.
Вероятно у многих уже накопились аккумуляторы от бесперебойников (UPS), систем сигнализаций и аварийного освещения.

В множестве бытовой и офисной техники находятся свинцово-кислотные аккумуляторы, и в независимости от марки аккумулятора и технологии производства, будь то обычный обслуживаемый автомобильный аккумулятор, AGM, гелевий (GEL) или маленький аккумулятор от фонарика, все они имеют свинцовые пластины и кислотный электролит.
По окончание эксплуатации такие аккумуляторы выбрасывать нельзя потому как они содержат свинец, в основном их ждет судьба утилизации где свинец извлекают и перерабатывают.
Но все же, не смотря на то что такие аккумуляторы в основном "необслужываемые", можно попытаться их восстановить вернув им прежнюю емкость и использовать еще некоторое время.

В этой статье я расскажу о том как восстановить 12вольтовый аккумулятор от UPSa на 7ah , но способ подойдет для любого кислотного аккумулятора. Но хочу предупредить что данные меры не следует производить на полностью рабочем аккумуляторе, так как на исправном аккумуляторе добиться восстановления емкости можно всего лишь правильным способом зарядки.

Итак берем аккумулятор, в данном случае старый и разряженный, поддеваем отверткой пластмассовою крышку. Скорее всего она точечно приклеена к корпусу.


Подняв крышку видим шесть резиновых колпачков, их задача не обслуживание аккумулятора, а стравливания образующихся при зарядке и работе газов, но мы воспользуемся ними в наших целях.


Снимаем колпачки и в каждое отверстие, с помощью шприца, наливаем 3мл дистиллированной воды, следует заметить что другая вода не годится для этого. А дистиллированную воду можно легко найти в аптеке или на авторынке, в самом крайнем случае может подойти талая вода от снега или чистая дождевая.


После того как мы долили воду, ставим аккумулятор на зарядку и заряжать его будем с помощью лабораторного (регулируемого) блока питания.
Подбираем напряжения пока не появляются какие то значения зарядного тока. Если аккумулятор в плохом состояние то зарядного тока может не наблюдаться, поначалу, вообще.
Напряжения надо повышать, пока не появится зарядный ток хотя бы в 10-20мА. Добившись таких значений зарядного тока нужно быть внимательным, так как ток будет со временем расти и придется постоянно уменьшать напряжение.
Когда ток дойдет до 100мА дальше напряжения уменьшать не надо. А когда ток заряда дойдет до 200мА нужно отключить аккумулятор на 12 часов.

Дальше снова подключаем аккумулятор на зарядку, напряжение должно быть таким чтоб ток зарядки для нашего 7ah аккумулятора был в 600мА. Также, постоянно наблюдая, поддерживаем заданный ток на протяжении 4 часов. Но смотрим за тем чтоб напряжение зарядки, для 12вольтового аккумулятора, было не больше 15-16 вольт.
После зарядки, спустя примерно час, аккумулятор нужно разрядить до 11 вольт, сделать это можно с помощью любой 12вольтовой лампочки (например на 15ват).


После разрядки аккумулятор нужно снова зарядить с током в 600мА. Лучше всего проделать такую процедуру несколько раз, то есть несколько циклов заряд-разряд.

Скорее всего вернуть номинальную не получится, так как сульфатация пластин уже понизила его ресурс, а к тому же имеют место быть и другие пагубные процессы. Но аккумулятор можно будет дальше использовать в штатном режиме и емкости для этого будет достаточно.

По поводу быстрого износа аккумуляторов в бесперебойниках, было замечено следующие причины. Находясь в одном корпусе с бесперебойником, аккумулятор постоянно поддается пассивному нагреву от активных элементов (силовых транзисторов) которые кстати говоря нагреваются до 60-70 градусов! Постоянный прогрев аккумулятора ведет к быстрому испарению электролита.
В дешевых, а порой и даже некоторых дорогих моделях UPSов отсутствует термокомпенсация заряда, то есть напряжение заряда выставлено на 13,8 вольта, но это допустимо для 10-15градусов, а для 25 градусов, а в корпусе порой и намного больше, напряжение заряда должно быть максимум 13,2-13,5 вольта!
Хорошим решением будет вынести аккумулятор за пределы корпуса, если хотите продлить его срок службы.

Также сказывается "постоянный маленький под заряд" бесперебойником, 13.5 вольтами и токе в 300мА. Такая подзарядка призводит к тому что когда кончается активная губчатая масса внутри аккумулятора то начинается реакция в его электродах что призводит к тому что свинец токоотводов на (+) становится коричневым (PbO2) а на (-) стает "губчатым".
Таким образом, при постоянном пере заряде, мы получаем разрушение токоотводов и "кипение" электролита с выделением водорода и кислорода, что приводит к увеличению концентрации электролита, что опять способствует разрушению электродов. Получается такой замкнутый процесс что призводит быстрому расходу ресурса аккумулятора.
Кроме того такой заряд (пере заряд) большим напряжением и током от которого электролит "кипит" - переводит свинец токоотводов в порошковый оксид свинца который со временем осыпается и может даже замыкать пластины.

При активном использование (частом заряде), рекомендуется раз в год доливать в аккумулятор дистиллированную воду.

Доливать только на полностью заряженный аккумулятор с контролем как уровня электролита так и напряжения. Некоем случае не переливать, лучше ее не долить потому как назад отбирать ее нельзя, потому что отсасывая электролит вы лишаете аккумулятор серной кислоты и в последствие концентрация меняется. Думаю понятно что серная кислота нелетучая поэтому в процессе "кипения" во время зарядки, она вся остается внутри аккумулятора - выходит только водород и кислород.

На клеммы подключаем цифровой вольтметр и шприцем на 5мл с иглой заливаем в каждую банку по 2-3мл дистиллированной воды, одновременно светя внутрь фонариком чтобы остановиться если вода перестала впитываться - после заливки 2-3мл смотрите в банку - увидите как вода быстро впитывается, а напряжение на вольтметре падает (на доли вольта). Повторяем доливку для каждой банки с паузами на впитывание по 10-20сек(примерно) до тех пор пока не увидите что "стекломаты" уже влажные - то есть вода уже не впитывается.

После доливки осматриваем нет ли перелива в каждой банке аккумулятора, вытираем весь корпус, устанавливаем на место резиновые колпачки и приклеиваем на место крышку.
Так как аккумулятор после доливки показывают примерно 50-70% зарядки, вам надо его зарядить. Но зарядку нужно осуществлять или регулируемым блоком питания или же бесперебойником или штатным устройством, но под присмотром, то есть во время зарядки необходимо пронаблюдать за состоянием аккумулятора (нужно видеть верх аккумулятора). В случае с бесперебойником, для этого придется сделать удлинители и вывести аккумулятор за пределы корпуса UPSa.

Под аккумулятор подстелем салфетки или целлофановые мешочки, заряжаем до 100% и смотрим, не протекает из какой либо банки электролит. Если вдруг такое произошло, прекращаем зарядку и убираем салфеткой подтеки. С помощью салфетки смоченной в растворе соды - очищаем корпус, все впадины и клеммы куда попал электролит, для того чтоб нейтрализовать кислоту.
Находим банку откуда произошло "выкипание" и смотрим, если в окошке видно электролит, отсасываем излишки шприцем, а потом аккуратно и плавно заправляем этот электролит обратно внутрь волокна. Часто случается что электролит после доливки не равномерно впитался и вскипел вверх.
При повторной зарядке наблюдаем за аккумулятором как описано выше и если "проблемная" банка аккумулятора снова начнет "изливаться" при зарядке, излишки электролита придется удалить из банки.
Также под осмотром следует проделать хотя бы 2-3 полных цикла разряда-заряда, если все прошло отлично и нет никаких подтеков, аккумулятор не греется (легкий нагрев при заряде не в счет), то аккумулятор можно собирать в корпус.

Ну а теперь рассмотрим особо кардинальные способы реанимации свинцово-кислотных аккумуляторов

Из аккумулятора сливается весь электролит, а внутренности промываются сначала пару раз горячей водой, а потом уже горячим раствором соды (3ч.л соды на 100мл воды) оставив в аккумуляторе раствор на 20 минут. Процесс можно повторить несколько раз, а вконце хорошенько промыв от остатков раствора соды - заливают новый электролит.
Дальше аккумулятор сутку заряжают, а спустя, в течение 10 дней, по 6 часов вдень.
Для автомобильных аккумуляторов током до 10 ампер и напряжением 14-16 вольт.

Второй способ это обратная зарядка, для этой процедуры понадобится мощный источник напряжения, для автомобильных аккумуляторов например сварочный аппарат, рекомендуемый ток - 80ампер напряжением 20 вольт.
Делают переполюсовку, то есть плюс к минусу а минус к плюсу и на протяжение пол часа "кипятят" аккумулятор с его родным электролитом, после чего электролит сливают и промывают аккумулятор горячей водой.
Дальше заливают новый электролит и соблюдая новую полярность, на протяжение сутки заряжают током 10-15 ампер.

Но самый эффективный способ делается с помощью хим. веществ.
Из полностью заряженного аккумулятора сливают электролит и после неоднократной промывки водой, заливают аммиачный раствор трилона Б (ЭТИЛЕНДИАМИНТЕТРАУКСУСНОКИСЛОГО натрия), содержащий 2 весовых процента трилона Б и 5 процентов аммиака. Происходит процесс десульфатации на протяжение 40 - 60 минут, на протяжение которого с небольшими брызгами выделяется газ. По прекращению такого газообразования можно судить о завершение процесса. При особо сильной сульфатации аммиачный раствор трилона Б следует залить снова, убрав перед этим отработавший.
Вконце процедуры внутренности аккумулятора тщательно промывают несколько раз дистиллированной водой и заливают новый электролит нужной плотности. Аккумулятор заряжают стандартным способом до номинальной емкости.
По поводу аммиачного раствора трилона Б, его можно разыскать в химических лабораториях и хранить в герметичных емкостях в темном месте.

А вообще если интересно то состав электролита которые выпускают фирмы Lighting, Electrol, Blitz, akkumulad, Phonix, Toniolyt и некоторые другие, это водный раствор серной кислоты (350-450гр. на литр) с прибавлением сернокислых солей магния, алюминия, натрия, аммония. В составе электролита фирмы Gruconnin кроме того содержатся калиевые квасцы и медный купорос.

После восстановления аккумулятор можно заряжать обычным для данного типа способом (например в UPSe) и не допускать разряда ниже 11вольт.
В многих бесперебойниках присутствует функция "калибровка АКБ" с помощью которой можно осуществлять циклы разряд-заряда. Подключив на выходе бесперебойника нагрузку в 50% от максимума ИБП, запускаем эту функцию и бесперебойник разряжает АКБ до 25% а потом заряжает до 100%

Ну а на совсем примитивном примере зарядка такого аккумулятора выглядит так:
На аккумулятор подается стабилизированное напряжение 14.5 вольта, через проволочный переменный резистор большой мощности или через стабилизатор тока.
Ток заряда расчсчитывается по простой формуле: емкость аккумулятора разделяем на 10, например для аккумулятора в 7ah будет - 700мА. И на стабилизаторе тока или с помощью переменного проволочного резистора необходимо выставить ток в 700мА. Ну а в процессе зарядки ток начнет падать и нужно будет уменьшать сопротивления резистора, со временем ручка резистора придет до упора в начальное положение и сопротивление резистора будет равно нулю. Ток будет дальше постепенно уменьшатся до нуля пока напряжение на аккумуляторе не станет постоянным - 14.5 вольта. Аккумулятор заряжен.
Дополнительную информацию по "правильной" зарядке аккумуляторов можно найти

светлые кристаллы на пластинах - это сульфатация

Отдельная "банка" батарея аккумулятора подвергалась постоянному недозаряду и в результате покрыта сульфатами, ее внутреннее сопротивление росло с каждым глубоким циклом, чтоб привело к тому что, во время заряда она стала "закипать" раньше всех, из-за потери емкости и выведения электролита в нерастворимые сульфаты.
Плюсовые пластины и их решетки превратились по консистенции в порошок, в следствие постоянного подзаряда бесперебойником в режиме "стенд-бай".

Свинцово кислотные аккумуляторы кроме автомобилей, мотоциклов и разнообразной бытовой техники, где только не встречаются и в фонариках и в часах и даже в самой мелкой электронике. И если вам попал в руки такой "нерабочий" свинцово-кислотный аккумулятор без опознавательных знаков и вы не знаете какое напряжение он должен выдавать в рабочем состояние. Это легко можно узнать по количеству банок в аккумуляторе. Отыщите защитную крышку на корпусе аккумулятора и снимите ее. Вы увидите колпачки для стравливание газа. по их количеству станет понятно на сколько "банок" данный аккумулятор.
1 банка - 2вольта (полностью заряженная - 2.17 вольта), то есть если колпачка 2 значит аккумулятор на 4 вольта.
Полностью разряженная банка аккумулятора должна быть не ниже 1.8 вольта, ниже разряжать нельзя!

Ну а вконце дам небольшую идею, для тех кому не хватает средств на покупку новых аккумуляторов. Найдите в вашем городе фирмы которые занимаются компьютерной техникой и УПСами (бесперебойниками для котлов, аккумуляторами для систем сигнализаций), договоритесь с ними чтоб они не выбрасывали старые аккумуляторы от бесперебойников а отдавали вам возможно по символической цене.
Практика показывает что половина AGM (гелевых) аккумуляторов можно восстановить если не до 100% то до 80-90% точно! А это еще пару лет отличной работы аккумулятора в вашем устройстве.

2 sealed lead acid battery

3 SLA battery

предназначается для широкого использования в качестве источника электропитания как в портативных устройствах и приборах, так и в стационарных системах различного назначения; возможная современная альтернатива - ионно-литиевая батарея (lithium-ion battery)

См. также в других словарях:

    Lead-acid battery - Batteries caption=A valve regulated lead acid battery EtoW=30 40 Wh/kg EtoS=60 75 Wh/L PtoW=180 W/kg|CtoDE=70% 92% EtoCP=7(sld) 18(fld) Wh/US$ SDR=3% 20%/month… … Wikipedia

    Battery recycling - is a recycling activity that aims to reduce the number of batteries being disposed as municipal solid waste. It is widely promoted by environmentalists concerned about contamination, particularly of land and water, by the addition of heavy metals … Wikipedia

    Battery (electricity) - For other uses, see Battery (disambiguation). Various cells and batteries (top left to bottom right): two AA, one D, one handheld ham radio battery, two 9 volt (PP3), two AAA, one C, one … Wikipedia

    battery - /bat euh ree/, n., pl. batteries. 1. Elect. a. Also called galvanic battery, voltaic battery. a combination of two or more cells electrically connected to work together to produce electric energy. b. cell (def. 7a). 2. any large group or series… … Universalium

    Battery - /bat euh ree/, n. The, a park at the S end of Manhattan, in New York City. Also called Battery Park. * * * Any of a class of devices, consisting of a group of electrochemical cells (see electrochemistry), that convert chemical energy into… … Universalium

    VRLA battery - A valve regulated (sealed) lead–acid battery A VRLA battery (valve regulated lead–acid battery) is a type of low maintenance lead–acid rechargeable battery. Because of their construction, VRLA batteries do not require regular addition of water to … Wikipedia

    Automotive battery - 12 V, 40 Ah Lead acid car battery An automotive battery is a type of rechargeable battery that supplies electric energy to an automobile. Usually this refers to an SLI battery (starting, lighting, ignition) to power the starter motor … Wikipedia

    Nickel–cadmium battery - From top to bottom – Gumstick , AA, and AAA Ni–Cd batteries. specific energy 40–60 W·h/kg energy density 50–150 W·h/L specific power 150& … Wikipedia

    Nickel-cadmium battery - Batteries caption=From top to bottom Gumstick , AA, and AAA NiCd batteries. EtoW = 40–60 Wh/kg EtoS = 50–150 Wh/L PtoW = 150W/kg CtoDE= 70%–90% [ ] EtoCP= ? US$… … Wikipedia

    History of the battery - could only function in a certain orientation. Many used glass jars to hold their components, which made them fragile. These practical flaws made them unsuitable for portable appliances. Near the end of the 19th century, the invention of dry cell… … Wikipedia

    Car battery - A car battery is a type of rechargeable battery that supplies electric energy to an automobile [ Horst Bauer Bosch Automotive Handbook 4th Edition Robert Bosch GmbH, Stuttgart 1996 ISBN 0 8376 0333 1, pages 803 807 ] . Usually this refers to an… … Wikipedia

Batteries caption=A valve regulated lead acid battery EtoW=30 40 Wh/kg EtoS=60 75 Wh/L PtoW=180 W/kg|CtoDE=70% 92% EtoCP=7(sld) 18(fld) Wh/US$ SDR=3% 20%/month… … Wikipedia

Battery (electricity) - For other uses, see Battery (disambiguation). Various cells and batteries (top left to bottom right): two AA, one D, one handheld ham radio battery, two 9 volt (PP3), two AAA, one C, one … Wikipedia

battery - /bat euh ree/, n., pl. batteries. 1. Elect. a. Also called galvanic battery, voltaic battery. a combination of two or more cells electrically connected to work together to produce electric energy. b. cell (def. 7a). 2. any large group or series… … Universalium

Battery - /bat euh ree/, n. The, a park at the S end of Manhattan, in New York City. Also called Battery Park. * * * Any of a class of devices, consisting of a group of electrochemical cells (see electrochemistry), that convert chemical energy into… … Universalium

Battery recycling - is a recycling activity that aims to reduce the number of batteries being disposed as municipal solid waste. It is widely promoted by environmentalists concerned about contamination, particularly of land and water, by the addition of heavy metals … Wikipedia

VRLA battery - A valve regulated (sealed) lead–acid battery A VRLA battery (valve regulated lead–acid battery) is a type of low maintenance lead–acid rechargeable battery. Because of their construction, VRLA batteries do not require regular addition of water to … Wikipedia

Nickel–cadmium battery - From top to bottom – Gumstick , AA, and AAA Ni–Cd batteries. specific energy 40–60 W·h/kg energy density 50–150 W·h/L specific power 150& … Wikipedia

Nickel-cadmium battery - Batteries caption=From top to bottom Gumstick , AA, and AAA NiCd batteries. EtoW = 40–60 Wh/kg EtoS = 50–150 Wh/L PtoW = 150W/kg CtoDE= 70%–90% [ ] EtoCP= ? US$… … Wikipedia

Automotive battery - 12 V, 40 Ah Lead acid car battery An automotive battery is a type of rechargeable battery that supplies electric energy to an automobile. Usually this refers to an SLI battery (starting, lighting, ignition) to power the starter motor … Wikipedia

Nickel–metal hydride battery - NiMH redirects here. For other uses, see NIMH (disambiguation). Nickel–metal hydride battery Modern, high capacity NiMH rechargeable cells specific energy 60–120 W·h/kg … Wikipedia

History of the battery - could only function in a certain orientation. Many used glass jars to hold their components, which made them fragile. These practical flaws made them unsuitable for portable appliances. Near the end of the 19th century, the invention of dry cell… … Wikipedia